19,252 research outputs found

    Neutrino masses and mixings

    Get PDF
    We propose a novel theoretical understanding of neutrino masses and mixings, which is attributed to the intrinsic vector-like feature of the regularized Standard Model at short distances. We try to explain the smallness of Dirac neutrino masses and the decoupling of the right-handed neutrino as a free particle. Neutrino masses and mixing angles are completely related to each other in the Schwinger-Dyson equations for their self-energy functions. The solutions to these equations and a possible pattern of masses and mixings are discussed.Comment: LaTex 11 page

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM

    Water Content and Superconductivity in Na0.3CoO2*yH2O

    Full text link
    We report here the correlation between the water content and superconductivity in Na0.3CoO2*yH2O under the influences of elevated temperature and cold compression. The x-ray diffraction of the sample annealed at elevated temperatures indicates that intergrowths exist in the compound at equilibrium when 0.6 < y < 1.4. Its low-temperature diamagnetization varies linearly with y, but is insensitive to the intergrowth, indicative of quasi-2D superconductivity. The Tc-onset, especially, shifts only slightly with y. Our data from cold compressed samples, on the other hand, show that the water-loss non-proportionally suppresses the diamagnetization, which is suggestive of weak links.Comment: 10 pages, 10 figures; submitted to Physica C (August 13, 2003

    The noncommutative Kubo Formula: Applications to Transport in Disordered Topological Insulators with and without Magnetic Fields

    Full text link
    The non-commutative theory of charge transport in mesoscopic aperiodic systems under magnetic fields, developed by Bellissard, Shulz-Baldes and collaborators in the 90's, is complemented with a practical numerical implementation. The scheme, which is developed within a C∗C^*-algebraic framework, enable efficient evaluations of the non-commutative Kubo formula, with errors that vanish exponentially fast in the thermodynamic limit. Applications to a model of a 2-dimensional Quantum spin-Hall insulator are given. The conductivity tensor is mapped as function of Fermi level, disorder strength and temperature and the phase diagram in the plane of Fermi level and disorder strength is quantitatively derived from the transport simulations. Simulations at finite magnetic field strength are also presented.Comment: 10 figure

    On-Chip Matching Networks for Radio-Frequency Single-Electron-Transistors

    Full text link
    In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting network has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to changes in the RF-SSET impedance. The charge sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot noise limit.Comment: 3 pages, 3 figures, REVTeX 4. To appear in Appl. Phys. Let
    • …
    corecore