279 research outputs found
Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture
Radio-frequency spectroscopy is used to study pairing in the normal and
superfluid phases of a strongly interacting Fermi gas with imbalanced spin
populations. At high spin imbalances the system does not become superfluid even
at zero temperature. In this normal phase full pairing of the minority atoms is
observed. This demonstrates that mismatched Fermi surfaces do not prevent
pairing but can quench the superfluid state, thus realizing a system of fermion
pairs that do not condense even at the lowest temperature
Observation of Feshbach resonances between two different atomic species
We have observed three Feshbach resonances in collisions between lithium-6
and sodium-23 atoms. The resonances were identified as narrow loss features
when the magnetic field was varied. The molecular states causing these
resonances have been identified, and additional lithium-sodium resonances are
predicted. These resonances will allow the study of degenerate Bose-Fermi
mixtures with adjustable interactions, and could be used to generate ultracold
heteronuclear molecules
Tomographic RF Spectroscopy of a Trapped Fermi Gas at Unitarity
We present spatially resolved radio-frequency spectroscopy of a trapped Fermi
gas with resonant interactions and observe a spectral gap at low temperatures.
The spatial distribution of the spectral response of the trapped gas is
obtained using in situ phase-contrast imaging and 3D image reconstruction. At
the lowest temperature, the homogeneous rf spectrum shows an asymmetric
excitation line shape with a peak at 0.48(4) with respect to the
free atomic line, where is the local Fermi energy
Formation Time of a Fermion Pair Condensate
The formation time of a condensate of fermionic atom pairs close to a
Feshbach resonance was studied. This was done using a phase-shift method in
which the delayed response of the many-body system to a modulation of the
interaction strength was recorded. The observable was the fraction of condensed
molecules in the cloud after a rapid magnetic field ramp across the Feshbach
resonance. The measured response time was slow compared to the rapid ramp,
which provides final proof that the molecular condensates reflect the presence
of fermion pair condensates before the ramp.Comment: 5 pages, 4 figure
Observation of Bose-Einstein Condensation of Molecules
We have observed Bose-Einstein condensation of molecules. When a spin mixture
of fermionic Li-6 atoms was evaporatively cooled in an optical dipole trap near
a Feshbach resonance, the atomic gas was converted into Li_2 molecules. Below
600 nK, a Bose-Einstein condensate of up to 900,000 molecules was identified by
the sudden onset of a bimodal density distribution. This condensate realizes
the limit of tightly bound fermion pairs in the crossover between BCS
superfluidity and Bose-Einstein condensation.Comment: 4 pages, 3 figure
Observation of Phase Separation in a Strongly-Interacting Imbalanced Fermi Gas
We have observed phase separation between the superfluid and the normal
component in a strongly interacting Fermi gas with imbalanced spin populations.
The in situ distribution of the density difference between two trapped spin
components is obtained using phase-contrast imaging and 3D image
reconstruction. A shell structure is clearly identified where the superfluid
region of equal densities is surrounded by a normal gas of unequal densities.
The phase transition induces a dramatic change in the density profiles as
excess fermions are expelled from the superfluid.Comment: 5 pages, 7 figure
Fifty-fold improvement in the number of quantum degenerate fermionic atoms
We have produced a quantum degenerate Li-6 Fermi gas with up to 7 x 10^7
atoms, an improvement by a factor of fifty over all previous experiments with
degenerate Fermi gases. This was achieved by sympathetic cooling with bosonic
Na-23 in the F=2, upper hyperfine ground state. We have also achieved
Bose-Einstein condensation of F=2 sodium atoms by direct evaporation
Condensation of Pairs of Fermionic Atoms Near a Feshbach Resonance
We have observed Bose-Einstein condensation of pairs of fermionic atoms in an
ultracold ^6Li gas at magnetic fields above a Feshbach resonance, where no
stable ^6Li_2 molecules would exist in vacuum. We accurately determined the
position of the resonance to be 822+-3 G. Molecular Bose-Einstein condensates
were detected after a fast magnetic field ramp, which transferred pairs of
atoms at close distances into bound molecules. Condensate fractions as high as
80% were obtained. The large condensate fractions are interpreted in terms of
pre-existing molecules which are quasi-stable even above the two-body Feshbach
resonance due to the presence of the degenerate Fermi gas.Comment: submitted to PRL. v3: clarifying revisions, added referenc
Superfluid Expansion of a Strongly Interacting Fermi Gas
We study the expansion of a rotating, superfluid Fermi gas. The presence and
absence of vortices in the rotating gas is used to distinguish superfluid and
normal parts of the expanding cloud. We find that the superfluid pairs survive
during the expansion until the density decreases below a critical value. Our
observation of superfluid flow at this point extends the range where fermionic
superfluidity has been studied to densities of 1.2 10^{11} cm^{-3}, about an
order of magnitude lower than any previous study.Comment: 5 pages, 5 figure
Radio-Frequency Spectroscopy of Ultracold Fermions
Radio-frequency techniques were used to study ultracold fermions. We observed
the absence of mean-field "clock" shifts, the dominant source of systematic
error in current atomic clocks based on bosonic atoms. This is a direct
consequence of fermionic antisymmetry. Resonance shifts proportional to
interaction strengths were observed in a three-level system. However, in the
strongly interacting regime, these shifts became very small, reflecting the
quantum unitarity limit and many-body effects. This insight into an interacting
Fermi gas is relevant for the quest to observe superfluidity in this system.Comment: 6 pages, 6 figure
- …