77,473 research outputs found
Comment on "Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn"
Recently, Rourke et al. reported point-contact spectroscopy results on the
heavy-fermion superconductor CeCoIn [1]. They obtained conductance spectra
on the c-axis surfaces of CeCoIn single crystals. Their major claims are
two-fold: CeCoIn has i) d-wave pairing symmetry and ii) two coexisting
order parameter components. In this Comment, we show that these claims are not
warranted by the data presented. [1] Rourke et al., Phys. Rev. Lett. 94, 107005
(2005).Comment: accepted for publication in Phys. Rev. Lett., final for
Genus Topology of the Cosmic Microwave Background from the WMAP 3-Year Data
We have independently measured the genus topology of the temperature
fluctuations in the cosmic microwave background seen in the Wilkinson Microwave
Anisotropy Probe (WMAP) 3-year data. A genus analysis of the WMAP data
indicates consistency with Gaussian random-phase initial conditions, as
predicted by standard inflation. We set 95% confidence limits on
non-linearities of -101 < f_{nl} < 107. We also find that the observed low l (l
<= 8) modes show a slight anti-correlation with the Galactic foreground, but
not exceeding 95% confidence, and that the topology defined by these modes is
consistent with that of a Gaussian random-phase distribution (within 95%
confidence).Comment: MNRAS LaTeX style (mn2e.cls), EPS and JPEG figure
Black Hole Solutions of Kaluza-Klein Supergravity Theories and String Theory
We find U(1)_{E} \times U(1)_{M} non-extremal black hole solutions of
6-dimensional Kaluza-Klein supergravity theories. Extremal solutions were found
by Cveti\v{c} and Youm\cite{C-Y}. Multi black hole solutions are also
presented. After electro-magnetic duality transformation is performed, these
multi black hole solutions are mapped into the the exact solutions found by
Horowitz and Tseytlin\cite{H-T} in 5-dimensional string theory compactified
into 4-dimensions. The massless fields of this theory can be embedded into the
heterotic string theory compactified on a 6-torus. Rotating black hole
solutions can be read off those of the heterotic string theory found by
Sen\cite{Sen3}.Comment: 23 pages text(latex), a figure upon reques
Observation of b symmetry vibrational levels of the SO \tilde{\mbox{C}} B state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants
The B state of SO has a double-minimum
potential in the antisymmetric stretch coordinate, such that the minimum energy
geometry has nonequivalent SO bond lengths. However, low-lying levels with odd
quanta of antisymmetric stretch (b vibrational symmetry) have not
previously been observed because transitions into these levels from the
zero-point level of the state are vibronically forbidden.
We use IR-UV double resonance to observe the b vibrational levels of the
state below 1600 cm of vibrational excitation. This
enables a direct characterization of the vibrational level staggering that
results from the double-minimum potential. In addition, it allows us to
deperturb the strong -axis Coriolis interactions between levels of a and
b vibrational symmetry, and to determine accurately the vibrational
dependence of the rotational constants in the distorted
electronic state
Monte Carlo simulations of bosonic reaction-diffusion systems
An efficient Monte Carlo simulation method for bosonic reaction-diffusion
systems which are mainly used in the renormalization group (RG) study is
proposed. Using this method, one dimensional bosonic single species
annihilation model is studied and, in turn, the results are compared with RG
calculations. The numerical data are consistent with RG predictions. As a
second application, a bosonic variant of the pair contact process with
diffusion (PCPD) is simulated and shown to share the critical behavior with the
PCPD. The invariance under the Galilean transformation of this boson model is
also checked and discussion about the invariance in conjunction with other
models are in order.Comment: Publishe
Point-contact spectroscopy in heavy-fermion superconductors
We develop a minimal model to calculate point-contact spectra between a
metallic tip and a superconducting heavy-fermion system. We apply our tunneling
model to the heavy fermion CeCoIn5, both in the normal and superconducting
state. In point-contact and scanning tunneling spectroscopy many heavy-fermion
materials, like CeCoIn5, exhibit an asymmetric differential conductance, dI/dV,
combined with a strongly suppressed Andreev reflection signal in the
superconducting state. We argue that both features may be explained in terms of
a multichannel tunneling model in the presence of localized states near the
interface. We find that it is not sufficient to tunnel into two itinerant bands
of light and heavy electrons to explain the Fano line shape of the differential
conductance. Localized states in the bulk or near the interface are an
essential component for quantum interference to occur when an electron tunnels
from the metallic tip of the point contact into the heavy-fermion system.Comment: 13 pages, 9 figures. Accepted for publication in Physical Review
Separable states to distribute entanglement
It was shown that two distant particles can be entangled by sending a third
particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev.
Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit
separable states to distribute entanglement by the same way, and calculate the
maximal amount of entanglement which two particles of separable states in the
class can have after applying the way.Comment: 4 pages, no figures, Revised argumen
Rotating Black Holes at Future Colliders. III. Determination of Black Hole Evolution
TeV scale gravity scenario predicts that the black hole production dominates
over all other interactions above the scale and that the Large Hadron Collider
will be a black hole factory. Such higher dimensional black holes mainly decay
into the standard model fields via the Hawking radiation whose spectrum can be
computed from the greybody factor. Here we complete the series of our work by
showing the greybody factors and the resultant spectra for the brane localized
spinor and vector field emissions for arbitrary frequencies. Combining these
results with the previous works, we determine the complete radiation spectra
and the subsequent time evolution of the black hole. We find that, for a
typical event, well more than half a black hole mass is emitted when the hole
is still highly rotating, confirming our previous claim that it is important to
take into account the angular momentum of black holes.Comment: typoes in eqs(82)-(84) corrected; version to appear in Phys. Rev. D;
references and a footnote added; same manuscript with high resolution
embedded figures available on
http://www.gakushuin.ac.jp/univ/sci/phys/ida/paper
- …