47,897 research outputs found

    Visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT): An alternative approach to solar activation of titania

    Get PDF
    Visible light harvesting or utilization through semiconductor photocatalysis is a key technology for solar chemical conversion processes. Although titania nanoparticles are popular as a base material of photocatalysis, the lack of visible light activity needs to be overcome. This mini-review is focused on an uncommon approach to visible light activation of titania: the ligand-to-metal charge transfer (LMCT) that takes place between TiO2 nanoparticles and surface adsorbates under visible light irradiation. We discuss a basic concept of photoinduced LMCT and the recent advances in LMCT-mediated visible light photocatalysis which has been applied in environmental remediation and solar energy conversion. Although the LMCT processes have been less investigated and limited in photocatalytic applications compared with other popular visible light activation methods such as impurity doping and dye sensitization, they provide lots of possibilities and flexibility in that a wide variety of organic or inorganic compounds can form surface complexes with TiO2 and introduce a new absorption band in the visible light region. The LMCT complexes may serve as a visible light sensitizer that initiates the photocatalytic conversion of various substrates or the self-degradation of the ligand complexes (usually pollutants) themselves. We summarized and discussed various LMCT photocatalytic systems and their characteristics. The LMCT-mediated activation of titania and other wide bandgap semiconductors has great potential to be developed as a more general method of solar energy utilization in photocatalytic systems. More systematic design and utilization of LMCT complexes on semiconductors are warranted to advance the solar-driven chemical conversion processes.open11144136Ysciescopu

    A method to find quantum noiseless subsystems

    Full text link
    We develop a structure theory for decoherence-free subspaces and noiseless subsystems that applies to arbitrary (not necessarily unital) quantum operations. The theory can be alternatively phrased in terms of the superoperator perspective, or the algebraic noise commutant formalism. As an application, we propose a method for finding all such subspaces and subsystems for arbitrary quantum operations. We suggest that this work brings the fundamental passive technique for error correction in quantum computing an important step closer to practical realization.Comment: 5 pages, to appear in Physical Review Letter

    Origin of Electric Field Induced Magnetization in Multiferroic HoMnO3

    Full text link
    We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO3 and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at TSR ~ 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T ~ 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order

    Axial charges of octet and decuplet baryons

    Full text link
    We present a study of axial charges of baryon ground and resonant states with relativistic constituent quark models. In particular, the axial charges of octet and decuplet NN, Σ\Sigma, Ξ\Xi, Δ\Delta, Σ\Sigma^*, and Ξ\Xi^* baryons are considered. The theoretical predictions are compared to existing experimental data and results from other approaches, notably from lattice quantum chromodynamics and chiral perturbation theory. The relevance of axial charges with regard to π\pi-dressing and spontaneous chiral-symmetry breaking is discussed

    Calculating ϵ/ϵ\epsilon'/\epsilon using HYP staggered fermions

    Full text link
    We present preliminary results for ϵ/ϵ\epsilon'/\epsilon calculated using HYP staggered fermions in the quenched approximation. We compare different choices of quenched penguin operators.Comment: 3 pages, 4 figures, Contribution to Lattice 2004 International Symposiu

    Composition dependence of electronic structure and optical properties of Hf1-xSixOy gate dielectrics

    Get PDF
    Copyright © 2008 American Institute of Physics. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditionsComposition-dependent electronic structure and optical properties of Hf1−xSixOy 0.1 x 0.6 gate dielectrics on Si at 450 °C grown by UV-photo-induced chemical vapor deposition UV-CVD have been investigated via x-ray photoemission spectroscopy and spectroscopy ellipsometry SE . By means of the chemical shifts in the Hf 4f, Si 2p, and O 1s spectra, the Hf–O–Si bondings in the as-deposited films have been confirmed. Analyses of composition-dependent band alignment of Hf1−xSixOy / Si gate stacks have shown that the valence band VB offset Ev demonstrates little change; however, the values of conduction band offset Ec increase with the increase in the silicon atomic composition, resulting from the increase in the separation between oxygen 2p orbital VB state and antibonding d states intermixed of Hf and Si. Analysis by SE, based on the Tauc–Lorentz model, has indicated that decreases in the optical dielectric constant and increase in band gap have been observed as a function of silicon contents. Changes in the complex dielectric functions and band gap Eg related to the silicon concentration in the films are discussed systematically. From the band offset and band gap viewpoint, these results suggest that Hf1−xSixOy films provide sufficient tunneling barriers for electrons and holes, making them promising candidates as alternative gate dielectrics.National Natural Science Foundation of China and Royal Society U.K

    Low-velocity anisotropic Dirac fermions on the side surface of topological insulators

    Full text link
    We report anisotropic Dirac-cone surface bands on a side-surface geometry of the topological insulator Bi2_2Se3_3 revealed by first-principles density-functional calculations. We find that the electron velocity in the side-surface Dirac cone is anisotropically reduced from that in the (111)-surface Dirac cone, and the velocity is not in parallel with the wave vector {\bf k} except for {\bf k} in high-symmetry directions. The size of the electron spin depends on the direction of {\bf k} due to anisotropic variation of the noncollinearity of the electron state. Low-energy effective Hamiltonian is proposed for side-surface Dirac fermions, and its implications are presented including refractive transport phenomena occurring at the edges of tological insulators where different surfaces meet.Comment: 4 pages, 2 columns, 4 figure

    Causal structures and the classification of higher order quantum computations

    Full text link
    Quantum operations are the most widely used tool in the theory of quantum information processing, representing elementary transformations of quantum states that are composed to form complex quantum circuits. The class of quantum transformations can be extended by including transformations on quantum operations, and transformations thereof, and so on up to the construction of a potentially infinite hierarchy of transformations. In the last decade, a sub-hierarchy, known as quantum combs, was exhaustively studied, and characterised as the most general class of transformations that can be achieved by quantum circuits with open slots hosting variable input elements, to form a complete output quantum circuit. The theory of quantum combs proved to be successful for the optimisation of information processing tasks otherwise untreatable. In more recent years the study of maps from combs to combs has increased, thanks to interesting examples showing how this next order of maps requires entanglement of the causal order of operations with the state of a control quantum system, or, even more radically, superpositions of alternate causal orderings. Some of these non-circuital transformations are known to be achievable and have even been achieved experimentally, and were proved to provide some computational advantage in various information-processing tasks with respect to quantum combs. Here we provide a formal language to form all possible types of transformations, and use it to prove general structure theorems for transformations in the hierarchy. We then provide a mathematical characterisation of the set of maps from combs to combs, hinting at a route for the complete characterisation of maps in the hierarchy. The classification is strictly related to the way in which the maps manipulate the causal structure of input circuits.Comment: 12 pages, revtex styl
    corecore