81,828 research outputs found

    Gaussian Effective Potential and the Coleman's normal-ordering Prescription : the Functional Integral Formalism

    Get PDF
    For a class of system, the potential of whose Bosonic Hamiltonian has a Fourier representation in the sense of tempered distributions, we calculate the Gaussian effective potential within the framework of functional integral formalism. We show that the Coleman's normal-ordering prescription can be formally generalized to the functional integral formalism.Comment: 6 pages, revtex; With derivation details and an example added. To appear in J. Phys.

    GRB 060206: Evidence of Precession of Central Engine

    Get PDF
    The high-redshift (z = 4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant re-brightening about 3000 s after the burst. We assume that the central engine became active again 2000 s after the main burst and drove another more collimated off-axis jet. The two jets both interacted with the ambient medium and contributed to the whole emission. We numerically fit this optical afterglow from the two jets using the forward-shock model and the forward-reverse shock model. Combining with the zero time effect, we suggest that the fast rise at ~3000 s in the afterglow was due to the off-axis emission from the second jet. The precession of the torus or accretion disk of the gamma ray burst engine is the natural explanation for the symmetry axes of these two jets not to lie on the same line

    Soluble kagome Ising model in a magnetic field

    Full text link
    An Ising model on the kagome lattice with super-exchange interactions is solved exactly under the presence of a nonzero external magnetic field. The model generalizes the super-exchange model introduced by Fisher in 1960 and is analyzed in light of a free-fermion model. We deduce the critical condition and present detailed analyses of its thermodynamic and magnetic properties. The system is found to exhibit a second-order transition with logarithmic singularities at criticality.Comment: 8 pages, 8 figures, references adde

    Calculated NMR T_2 relaxation due to vortex vibrations in cuprate superconductors

    Full text link
    We calculate the rate of transverse relaxation arising from vortex motion in the mixed state of YBa_2Cu_3O_7 with the static field applied along the c axis. The vortex dynamics are described by an overdamped Langevin equation with a harmonic elastic free energy. We find that the variation of the relaxation with temperature, average magnetic field, and local field is consistent with experiments; however, the calculated time dependence is different from what has been measured and the value of the rates calculated is roughly two orders of magnitude slower than what is observed. Combined with the strong experimental evidence pointing to vortex motion as the dominant mechanism for T_2 relaxation, these results call into question a prior conclusion that vortex motion is not significant in T_1 measurements in the vortex state.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    On the rooted Tutte polynomial

    Get PDF
    The Tutte polynomial is a generalization of the chromatic polynomial of graph colorings. Here we present an extension called the rooted Tutte polynomial, which is defined on a graph where one or more vertices are colored with prescribed colors. We establish a number of results pertaining to the rooted Tutte polynomial, including a duality relation in the case that all roots reside around a single face of a planar graph. The connection with the Potts model is also reviewed.Comment: plain latex, 14 pages, 2 figs., to appear in Annales de l'Institut Fourier (1999

    GRB 060206: hints of precession of the central engine?

    Get PDF
    Aims. The high-redshift (z=4.048) gamma-ray burst GRB 060206 showed unusual behavior, with a significant rebrightening by a factor of ~4 at about 3000 s after the burst. We argue that this rebrightening implies that the central engine became active again after the main burst produced by the first ejecta, then drove another more collimated jet-like ejecta with a larger viewing angle. The two ejecta both interacted with the ambient medium, giving rise to forward shocks that propagated into the ambient medium and reverse shocks that penetrated into the ejecta. The total emission was a combination of the emissions from the reverse- and forward- shocked regions. We discuss how this combined emission accounts for the observed rebrightening. Methods. We apply numerical models to calculate the light curves from the shocked regions, which include a forward shock originating in the first ejecta and a forward-reverse shock for the second ejecta. Results. We find evidence that the central engine became active again 2000 s after the main burst. The combined emission produced by interactions of these two ejecta with the ambient medium can describe the properties of the afterglow of this burst. We argue that the rapid rise in brightness at ~3000 s in the afterglow is due to the off-axis emission from the second ejecta. The precession of the torus or accretion disk of the central engine is a natural explanation for the departure of the second ejecta from the line of sight

    The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach

    Full text link
    The ground, one- and two-particle states of the (1+1)-dimensional massive sine-Gordon field theory are investigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain region of the model-parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. Besides, for the bosonic equivalent to the massive Schwinger model, the masses of the one boson and two-boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files
    corecore