16,611 research outputs found

    Unified Analysis of Cosmological Perturbations in Generalized Gravity

    Full text link
    In a class of generalized Einstein's gravity theories we derive the equations and general asymptotic solutions describing the evolution of the perturbed universe in unified forms. Our gravity theory considers general couplings between the scalar field and the scalar curvature in the Lagrangian, thus includes broad classes of generalized gravity theories resulting from recent attempts for the unification. We analyze both the scalar-type mode and the gravitational wave in analogous ways. For both modes the large scale evolutions are characterized by the same conserved quantities which are valid in the Einstein's gravity. This unified and simple treatment is possible due to our proper choice of the gauges, or equivalently gauge invariant combinations.Comment: 4 pages, revtex, no figure

    A conserved variable in the perturbed hydrodynamic world model

    Full text link
    We introduce a scalar-type perturbation variable Φ\Phi which is conserved in the large-scale limit considering general sign of three-space curvature (KK), the cosmological constant (Λ\Lambda), and time varying equation of state. In a pressureless medium Φ\Phi is {\it exactly conserved} in all scales.Comment: 4 pages, no figure, To appear in Phys. Rev.

    Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.Comment: 5 pages, revtex, no figure

    Webs of Lagrangian Tori in Projective Symplectic Manifolds

    Full text link
    For a Lagrangian torus A in a simply-connected projective symplectic manifold M, we prove that M has a hypersurface disjoint from a deformation of A. This implies that a Lagrangian torus in a compact hyperk\"ahler manifold is a fiber of an almost holomorphic Lagrangian fibration, giving an affirmative answer to a question of Beauville's. Our proof employs two different tools: the theory of action-angle variables for algebraically completely integrable Hamiltonian systems and Wielandt's theory of subnormal subgroups.Comment: 18 pages, minor latex problem fixe

    Relativistic Hydrodynamic Cosmological Perturbations

    Get PDF
    Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. Considering the general curvature (KK) and the cosmological constant (Λ\Lambda) in the background medium, the perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in general scales. In the first part, we elaborate these Newtonian correspondences. In the second part, using the identified gauge-invariant variables with correct Newtonian correspondences, we present the relativistic results with general pressures in the background and perturbation. We present the general super-sound-horizon scale solutions of the above mentioned variables valid for general KK, Λ\Lambda, and generally evolving equation of state. We show that, for vanishing KK, the super-sound-horizon scale evolution is characterised by a conserved variable which is the perturbed three-space curvature in the comoving gauge. We also present equations for the multi-component hydrodynamic situation and for the rotation and gravitational wave.Comment: 16 pages, no figure, To appear in Gen. Rel. Gra

    Third order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    Full text link
    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third and higher order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations we take the comoving gauge. We discover that the third-order correction terms are of ϕv\phi_v-order higher than the second-order terms where ϕv\phi_v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential we have δΦ35ϕv\delta \Phi \sim {3 \over 5} \phi_v to the linear order. Therefore, the pure general relativistic effects are of varphivvarphi_v-order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear order gravitational potential perturbation strength. From the temperature anisotropy of cosmic microwave background we have δTT13δΦ15ϕv105{\delta T \over T} \sim {1 \over 3} \delta \Phi \sim {1 \over 5} \phi_v \sim 10^{-5}. Therefore, our present result reinforces our previous important practical implication that near current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near the horizon.Comment: 9 pages, no figur

    Non-abelian dynamics in first-order cosmological phase transitions

    Full text link
    Bubble collisions in cosmological phase transitions are explored, taking the non-abelian character of the gauge fields into account. Both the QCD and electroweak phase transitions are considered. Numerical solutions of the field equations in several limits are presented.Comment: 8 pages, 2 figures. Contribution to the CosPA 2003 Cosmology and Particle Astrophysics Symposium. Typos correcte

    Third-order cosmological perturbations of zero-pressure multi-component fluids: Pure general relativistic nonlinear effects

    Full text link
    Present expansion stage of the universe is believed to be mainly governed by the cosmological constant, collisionless dark matter and baryonic matter. The latter two components are often modeled as zero-pressure fluids. In our previous work we have shown that to the second-order cosmological perturbations, the relativistic equations of the zero-pressure, irrotational, multi-component fluids in a spatially near flat background effectively coincide with the Newtonian equations. As the Newtonian equations only have quadratic order nonlinearity, it is practically interesting to derive the potential third-order perturbation terms in general relativistic treatment which correspond to pure general relativistic corrections. Here, we present pure general relativistic correction terms appearing in the third-order perturbations of the multi-component zero-pressure fluids. We show that, as in a single component situation, the third-order correction terms are quite small (~ 5 x10^{-5} smaller compared with the relativistic/Newtonian second-order terms) due to the weak level anisotropy of the cosmic microwave background radiation. Still, there do exist pure general relativistic correction terms in third-order perturbations which could potentially become important in future development of precision cosmology. We include the cosmological constant in all our analyses.Comment: 20 pages, no figur

    Narrow Band Chandra X-ray Analysis of Supernova Remnant 3C391

    Full text link
    We present the narrow-band and the equivalent width (EW) images of the thermal composite supernova remnant (SNR) 3C391 for the X-ray emission lines of elements Mg, Si, & S using the Chandra ACIS Observational data. These EW images reveal the spatial distribution of the emission of the metal species Mg, Si, & S in the remnant. They have clumpy structure similar to that seen from the broadband diffuse emission, suggesting that they are largely of interstellar origin. We find an interesting finger-like feature protruding outside the southwestern radio border of the remnant, which is somewhat similar to the jet-like Si structure found in the famous SNR Cas A. This feature may possibly be the debris of the jet of ejecta which implies an asymmetrical supernova explosion of a massive progenitor star.Comment: 9 pages, 4 embedded figures, Chinese Journal of Astronomy and Astrophysics (ChJAA), in pres
    corecore