219,669 research outputs found
Forward Neutral Pion Production in p + p and d + Au Collisions at √s_(NN) = 200 GeV
Measurements of the production of forward π^0 mesons from p + p and d + Au collisions at √s_(NN) = 200  GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as η increases, decreasing to ~30% of the p + p yield at =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward π^0 with charged hadrons at η ≈ 0 show a recoil peak in p + p that is suppressed in d + Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei
Directed flow in Au + Au collisions at √s_(NN) = 62.4 GeV
We present the directed flow (v1) measured in Au+Au collisions at √s_(NN) = 62.4 GeV in the midpseudorapidity
region |η| < 1.3 and in the forward pseudorapidity region 2.5 < |η| < 4.0. The results are obtained using the
three-particle cumulant method, the event plane method with mixed harmonics, and for the first time at the
Relativistic Heavy Ion Collider, the standard method with the event plane reconstructed from spectator neutrons.
Results from all three methods are in good agreement. Over the pseudorapidity range studied, charged particle
directed flow is in the direction opposite to that of fragmentation neutrons
Comment on "Quantum Confinement and Optical Gaps in Si Nanocrystals"
We show that the method used by Ogut, Chelikowsky and Louie (Phys. Rev. Lett.
79, 1770 (1997)) to calculate the optical gap of Si nanocrystals omits an
electron-hole polarization energy. When this contribution is taken into
account, the corrected optical gap is in excellent agreement with
semi-empirical pseudopotential calculations.Comment: 3 pages, 1 figur
Dynamics of thin-film spin-flip transistors with perpendicular source-drain magnetizations
A "spin-flip transistor" is a lateral spin valve consisting of ferromagnetic
source drain contacts to a thin-film normal-metal island with an electrically
floating ferromagnetic base contact on top. We analyze the
\emph{dc}-current-driven magnetization dynamics of spin-flip transistors in
which the source-drain contacts are magnetized perpendicularly to the device
plane by magnetoelectronic circuit theory and the macrospin
Landau-Lifshitz-Gilbert equation. Spin flip scattering and spin pumping effects
are taken into account. We find a steady-state rotation of the base
magnetization at GHz frequencies that is tuneable by the source-drain bias. We
discuss the advantages of the lateral structure for high-frequency generation
and actuation of nanomechanical systems over recently proposed nanopillar
structures.Comment: Accepted by Phys.Rev.B as regular articl
- …