7,770 research outputs found

    Exceeding the Manley-Rowe quantum efficiency limit in an optically pumped THz amplifier

    Get PDF
    Using a microscopic theory based on the Maxwell-semiconductor Bloch equations, we investigate the possibility of an optically-assisted electrically-driven THz quantum cascade laser. Whereas in optical conversion schemes the power conversion efficiency is limited by the Manley-Rowe relation, the proposed optically-assisted scheme can achieve higher efficiency by coherently recovering the optical pump energy. Furthermore, due to quantum coherence effects the detrimental effects of scattering are mitigated

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure

    Stability of antiphase line defects in nanometer-sized boron-nitride cones

    Full text link
    We investigate the stability of boron nitride conical sheets of nanometer size, using first-principles calculations. Our results indicate that cones with an antiphase boundary (a line defect that contains either B-B or N-N bonds) can be more stable than those without one. We also find that doping the antiphase boundaries with carbon can enhance their stability, leading also to the appearance of localized states in the bandgap. Among the structures we considered, the one with the smallest formation energy is a cone with a carbon-modified antiphase boundary that presents a spin splitting of about 0.5 eV at the Fermi level.Comment: 5 two-column pages with 2 figures Accepted for publication in Physical Review B (vol 70, 15 Nov.

    Spin-charge separation in the single hole doped Mott antiferromagnet

    Full text link
    The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly present. By identifying the phase string effect with spin backflow, we point out that spin-charge separation must exist in such a system: the doped hole has to decay into a neutral spinon and a spinless holon, together with the phase string. We show that while the spinon remains coherent, the holon motion is deterred by the phase string, resulting in its localization in space. We calculate the electron spectral function which explains the line shape of the spectral function as well as the ``quasiparticle'' spectrum observed in angle-resolved photoemission experiments. Other analytic and numerical approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.

    Mean-Field Description of Phase String Effect in the tāˆ’Jt-J Model

    Full text link
    A mean-field treatment of the phase string effect in the tāˆ’Jt-J model is presented. Such a theory is able to unite the antiferromagnetic (AF) phase at half-filling and metallic phase at finite doping within a single theoretical framework. We find that the low-temperature occurrence of the AF long range ordering (AFLRO) at half-filling and superconducting condensation in metallic phase are all due to Bose condensations of spinons and holons, respectively, on the top of a spin background described by bosonic resonating-valence-bond (RVB) pairing. The fact that both spinon and holon here are bosonic objects, as the result of the phase string effect, represents a crucial difference from the conventional slave-boson and slave-fermion approaches. This theory also allows an underdoped metallic regime where the Bose condensation of spinons can still exist. Even though the AFLRO is gone here, such a regime corresponds to a microscopic charge inhomogeneity with short-ranged spin ordering. We discuss some characteristic experimental consequences for those different metallic regimes. A perspective on broader issues based on the phase string theory is also discussed.Comment: 18 pages, five figure

    Effect of Ce on stainless steel performance during electroslag remelting (ESR)

    Get PDF
    Three electroslag remelting heats were carried out by using a 1-ton argon atmosphere ESR furnace under three kinds of slag containing different Ce2O3 content. Specimens were taken at electrode and each ingot for analyzing the inclusions by scanning electron microscope - energy dispersive spectrometer (SEM-EDS). After heat treatment, the tensile and impact of each steel product was measured to study the effect of Ce content on steel performance.The results show that the non-metallic inclusions content was largely reduced in each ingot compared with that in electrode, and the ingot containing 0,05 % Ce has the best steel cleanliness and performance, while the ingot containing 0,13 % Ce has the worst steel cleanliness and performance

    Effect of Ce on stainless steel performance during electroslag remelting (ESR)

    Get PDF
    Three electroslag remelting heats were carried out by using a 1-ton argon atmosphere ESR furnace under three kinds of slag containing different Ce2O3 content. Specimens were taken at electrode and each ingot for analyzing the inclusions by scanning electron microscope - energy dispersive spectrometer (SEM-EDS). After heat treatment, the tensile and impact of each steel product was measured to study the effect of Ce content on steel performance.The results show that the non-metallic inclusions content was largely reduced in each ingot compared with that in electrode, and the ingot containing 0,05 % Ce has the best steel cleanliness and performance, while the ingot containing 0,13 % Ce has the worst steel cleanliness and performance

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the tāˆ’Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure
    • ā€¦
    corecore