7,132 research outputs found

    Further investigation of a contactless patient-electrode interface of an Electrical Impedance Mammography system

    Get PDF
    The Sussex Mk4 Electrical Impedance Mammography (EIM) system is a novel instrument, designed for the detection of early breast cancer, based upon Electrical Impedance Tomography (EIT). Many innovations in the field have been incorporated in the design improving both signal distribution and response. This paper investigates the behaviour of the contactless patient-electrode interface. The interface was studied in detail using phantom and healthy volunteer, in-vivo, data. Our findings show the necessity for the careful design of electrode enclosure so that the response of the system is not affected by the unpredictable positioning of the breast; it closely mimics those conditions seen when using the phantom. The paper includes a number of possible designs and their individual characteristics. In addition an explanation on the unanticipated effects and solutions for such are described. © 2010 IOP Publishing Ltd

    PSR 0943+10: a bare strange star?

    Get PDF
    Recent work by Rankin & Deshpande strongly suggests that there exist strong ``micro-storms'' rotating around the magnetic axis of the 1.1s pulsar PSR 0943+10. Such a feature hints that most probably the large-voltage vacuum gap proposed by Ruderman & Sutherland (RS) does exist in the pulsar polar cap. However, there are severe arguments against the formation of the RS-type gap in pulsars, since the binding energies of both the Fe ions and the electrons in a neutron star's surface layer is too small to prevent thermionic ejection of the particles from the surface. Here we propose that PSR 0943+10 (probably also most of the other ``drifting'' pulsars) might be bare strange stars rather than normal neutron stars, in which the ``binding energy'' at the surface is merely infinity either for the case of ``pulsar'' or ``anti-pulsar''. It is further proposed that identifying a drifting pulsar as an anti-pulsar is the key criterion to distinguish strange stars from neutron stars.Comment: 4 pages, no figures, LaTeX, accepted 1999 July 9 by ApJ Letter

    Cryptanalysis of an MPEG-Video Encryption Scheme Based on Secret Huffman Tables

    Get PDF
    This paper studies the security of a recently-proposed MPEG-video encryption scheme based on secret Huffman tables. Our cryptanalysis shows that: 1) the key space of the encryption scheme is not sufficiently large against divide-and-conquer (DAC) attack and known-plaintext attack; 2) it is possible to decrypt a cipher-video with a partially-known key, thus dramatically reducing the complexity of the DAC brute-force attack in some cases; 3) its security against the chosen-plaintext attack is very weak. Some experimental results are included to support the cryptanalytic results with a brief discuss on how to improve this MPEG-video encryption scheme.Comment: 8 pages, 4 figure

    A variant transfer matrix method suitable for transport through multi-probe systems

    Full text link
    We have developed a variant transfer matrix method that is suitable for transport through multi-probe systems. Using this method, we have numerically studied the quantum spin Hall effect (QSHE) on 2D graphene with both intrinsic (Vso) and Rashba (Vr) spin-orbit (SO) couplings. The integer QSHE arises in the presence of intrinsic SO interaction and is gradually destroyed by the Rashba SO interaction and disorder fluctuation. We have numerically determined the phase boundaries separating integer QSHE and spin Hall liquid. We have found that when Vso> 0.2t with t the hopping constant the energy gap needed for the integer QSHE is the largest satisfying |E|<t. For smaller Vso the energy gap decreases linearly. In the presence of Rashba SO interaction or disorders, the energy gap diminishes. With Rashba SO interaction the integer QSHE is robust at the largest energy within the energy gap while at the smallest energy within the energy gap the integer QSHE is insensitive to the disorder

    The Current Flows in Pulsar Magnetospheres

    Full text link
    The global structure of the current flows in pulsar magnetospheres is investigated, with rough calculations of the elements in the magnetospheric circuit. It is emphasized that the potential of critical field lines is the same as that of interstellar medium, and that the pulsars whose rotation axes and magnetic dipole axes are parallel should be positively charged, in order to close the pulsar's current flows. The statistical relation between the radio luminosity and pulsar's electric charge (or the spindown power) may hint that the millisecond pulsars could be low-mass bare strange stars.Comment: 10 pages, 4 figure
    corecore