9,472 research outputs found
Quantum Computers, Factoring, and Decoherence
In a quantum computer any superposition of inputs evolves unitarily into the
corresponding superposition of outputs. It has been recently demonstrated that
such computers can dramatically speed up the task of finding factors of large
numbers -- a problem of great practical significance because of its
cryptographic applications. Instead of the nearly exponential (, for a number with digits) time required by the fastest classical
algorithm, the quantum algorithm gives factors in a time polynomial in
(). This enormous speed-up is possible in principle because quantum
computation can simultaneously follow all of the paths corresponding to the
distinct classical inputs, obtaining the solution as a result of coherent
quantum interference between the alternatives. Hence, a quantum computer is
sophisticated interference device, and it is essential for its quantum state to
remain coherent in the course of the operation. In this report we investigate
the effect of decoherence on the quantum factorization algorithm and establish
an upper bound on a ``quantum factorizable'' based on the decoherence
suffered per operational step.Comment: 7 pages,LaTex + 2 postcript figures in a uuencoded fil
Cocommutative coalgebras: homotopy theory and Koszul duality
We extend a construction of Hinich to obtain a closed model category
structure on all differential graded cocommutative coalgebras over an
algebraically closed field of characteristic zero. We further show that the
Koszul duality between commutative and Lie algebras extends to a Quillen
equivalence between cocommutative coalgebras and formal coproducts of curved
Lie algebras.Comment: 38 page
Research on digital transducer principles. Volume 7 - Dielectric properties of thin polymer films, 1 July 1967 - 30 June 1968
Dielectric properties of thin films of polymerized oil-metal-silicon structure
Deutsch-Jozsa algorithm as a test of quantum computation
A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a
refined algorithm, which reduces the size of the register and simplifies the
function evaluation, is proposed. The refined version allows a simpler analysis
of the use of entanglement between the qubits in the algorithm and provides
criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful
test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev
Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium.
Activation of Hedgehog (Hh) signaling requires the transmembrane protein Smoothened (Smo), a member of the G-protein coupled receptor superfamily. In mammals, Smo translocates to the primary cilium upon binding of Hh ligands to their receptor, Patched (Ptch1), but it is unclear if ciliary trafficking of Smo is sufficient for pathway activation. Here, we demonstrate that cyclopamine and jervine, two structurally related inhibitors of Smo, force ciliary translocation of Smo. Treatment with SANT-1, an unrelated Smo antagonist, abrogates cyclopamine- and jervine-mediated Smo translocation. Further, activation of protein kinase A, either directly or through activation of Galphas, causes Smo to translocate to a proximal region of the primary cilium. We propose that Smo adopts multiple inactive and active conformations, which influence its localization and trafficking on the primary cilium
Recommended from our members
Topological twisted sigma model with H-flux revisited
In this paper we revisit the topological twisted sigma model with H-flux. We explicitly expand and then twist the worldsheet Lagrangian for bi-Hermitian geometry. we show that the resulting action consists of a BRST exact term and pullback terms, which only depend on one of the two generalized complex structures and the cohomological class of , as was expected by Kapustin and Li
- …