44 research outputs found

    Adding Speckle-Tracking Echocardiography to Visual Assessment of Systolic Wall Motion Abnormalities Improves the Detection of Myocardial Infarction

    Get PDF
    Background: The aim of this study was to investigate whether speckle-tracking echocardiography (STE) improves the detection of myocardial infarction (MI) over visual assessment of systolic wall motion abnormalities (SWMAs) using delayed enhancement cardiac magnetic resonance imaging as a reference.Methods: Transthoracic echocardiography was performed in 95 patients with first ST segment elevation MI 110 days (interquartile range, 97-171 days) after MI and in 48 healthy control subjects. Two experienced observers independently assessed SWMAs. Separately, longitudinal peak negative, peak systolic, end-systolic, global strain, and strain rate were measured and averaged for the American Heart Association-recommended coronary artery perfusion territories. Receiver operating characteristic analysis was used to determine a single optimal cutoff value for each strain parameter. The diagnostic accuracy of an algorithm combining visual assessment and STE was evaluated.Results: Median infarct size and transmurality were 15% (interquartile range, 7%-24%) and 64% (interquartile range, 46%-78%), respectively. Sensitivity, specificity, and accuracy of visual assessment to detect MI were 74% (95% CI, 63%-82%), 85% (95% CI, 72%-93%), and 78% (95% CI, 70%-84%), respectively. Among the strain parameters, SR had the highest diagnostic accuracy (area under the curve, 0.88; 95% CI, 0.83-0.94; cutoff value, -0.97 sec(-1)). The combination with STE improved sensitivity compared with visual assessment alone (94%; 95% CI, 86%-97%; P &lt;.001), minimally affecting specificity (79%; 95% CI, 65%-89%; P = .607). Overall accuracy improved to 89% (95% CI, 82%-93%; P = .011). Multivariate analysis accounting for age and sex demonstrated that SR was independently associated with MI (odds ratio, 2.0; 95% CI, 1.6-2.7).Conclusions: The sensitivity and diagnostic accuracy of visually detecting chronic MI by assessing SWMAs are moderate but substantially improve when adding STE.</p

    Similar hemostatic responses to hypovolemia induced by hemorrhage and lower body negative pressure reveal a hyperfibrinolytic subset of non-human primates.

    No full text
    BackgroundTo study central hypovolemia in humans, lower body negative pressure (LBNP) is a recognized alternative to blood removal (HEM). While LBNP mimics the cardiovascular responses of HEM in baboons, similarities in hemostatic responses to LBNP and HEM remain unknown in this species.MethodsThirteen anesthetized baboons were exposed to progressive hypovolemia by HEM and, four weeks later, by LBNP. Hemostatic activity was evaluated by plasma markers, thromboelastography (TEG), flow cytometry, and platelet aggregometry at baseline (BL), during and after hypovolemia.ResultsBL values were indistinguishable for most parameters although platelet count, maximal clot strength (MA), protein C, thrombin anti-thrombin complex (TAT), thrombin activatable fibrinolysis inhibitor (TAFI) activity significantly differed between HEM and LBNP. Central hypovolemia induced by either method activated coagulation; TEG R-time decreased and MA increased during and after hypovolemia compared to BL. Platelets displayed activation by flow cytometry; platelet count and functional aggregometry were unchanged. TAFI activity and protein, Factors V and VIII, vWF, Proteins C and S all demonstrated hemodilution during HEM and hemoconcentration during LBNP, whereas tissue plasminogen activator (tPA), plasmin/anti-plasmin complex, and plasminogen activator inhibitor-1 did not. Fibrinolysis (TEG LY30) was unchanged by either method; however, at BL, fibrinolysis varied greatly. Post-hoc analysis separated baboons into low-lysis (LY30 2%) whose fibrinolytic state matched at both HEM and LBNP BL. In high-lysis, BL tPA and LY30 correlated strongly (r = 0.95; PConclusionsCentral hypovolemia induced by either LBNP or HEM resulted in activation of coagulation; thus, LBNP is an adjunct to study hemorrhage-induced pro-coagulation in baboons. Furthermore, this study revealed a subset of baboons with baseline hyperfibrinolysis, which was strongly coupled to tPA and uncoupled from TAFI activity
    corecore