168 research outputs found

    Spent Culture Medium from Virulent Borrelia burgdorferi Increases Permeability of Individually Perfused Microvessels of Rat Mesentery

    Get PDF
    Background Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi(Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivostudies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells. Methodology/Principal Findings The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca2+]i, were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca2+]i, a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca2+]i. Within 2–5 min, the mean peak Lp increased to 5.6±0.9 times the control, and endothelial [Ca2+]i increased from 113±11 nM to a mean peak value of 324±35 nM. In contrast, neither endothelial [Ca2+]i nor Lp was altered by B31-A spent medium. Conclusions/Significance A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A

    Androgen receptor acetylation governs trans activation and MEKK1-induced apoptosis without affecting in vitro sumoylation and trans-repression function

    Get PDF
    This work was supported by grants from the NIH (R01CA86072 to R.G.P. and R01CA72038-01 to S.A.W.F.) and The Susan Komen Breast Cancer Foundation (to R.G.P.). R.T.H. and E.J. were supported by the Medical Research Council. Y.-G.Y. is supported by grant CA26504 to E. R. Stanley. Work conducted at the Albert Einstein College of Medicine was supported by Cancer Center Core National Institutes of Health grant 5-P30-CA13330-26.The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both traits repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-kappaS, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.Publisher PDFPeer reviewe

    Histone Demethylase kdm5d Upregulation Drives Sex Differences in Colon Cancer

    Get PDF
    Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC

    Catalytic conversion of methane at low temperatures: a critical review

    Get PDF
    The current study reviews the recent development in the direct conversion of methane into syngas, methanol, light olefins, and aromatic compounds. For syngas production, nickel-based catalysts are considered as a good choice. Methane conversion (84%) is achieved with nearly no coke formation when the 7% Ni-1%Au/Al2O3 catalyst is used in the steam reforming of methane (SRM), whereas for dry reforming of methane (DRM), a methane conversion of 17.9% and CO2 conversion of 23.1% are found for 10%Ni/ZrOxMnOx/SiO2 operated at 500oC. The progress of direct conversion of methane to methanol is also summarized with an insight into its selectivity and/or conversion, which shows that in liquid-phase heterogeneous systems, high selectivity (>80%) can be achieved at 50oC, but the conversion is low. The latest development of nonoxidative coupling of methane (NOCM) and oxidative coupling of methane (OCM) for the production of olefins is also reviewed. The Mn2O3–TiO2–Na2WO4/SiO2 catalyst is reported to show the high C2 yield (22%) and a high selectivity toward C2 (62%) during the OCM at 650oC. For NOCM, 98% selectivity of ethane can be achieved when a tantalum hydride catalyst supported on silica is used. In addition, the Mo-based catalysts are the most suitable for the preparation of aromatic compounds from methane

    Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes

    Get PDF
    Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 x 10(-10). Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (r(g) = 0.39, P = 1.68 x 10(-4)). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.Peer reviewe

    Spent Culture Medium from Virulent Borrelia burgdorferi Increases Permeability of Individually Perfused Microvessels of Rat Mesentery

    Get PDF
    Lyme disease is a common vector-borne disease caused by the spirochete Borrelia burgdorferi (Bb), which manifests as systemic and targeted tissue inflammation. Both in vitro and in vivo studies have shown that Bb-induced inflammation is primarily host-mediated, via cytokine or chemokine production that promotes leukocyte adhesion/migration. Whether Bb produces mediators that can directly alter the vascular permeability in vivo has not been investigated. The objective of the present study was to investigate if Bb produces a mediator(s) that can directly activate endothelial cells resulting in increases in permeability in intact microvessels in the absence of blood cells.The effects of cell-free, spent culture medium from virulent (B31-A3) and avirulent (B31-A) B. burgdorferi on microvessel permeability and endothelial calcium concentration, [Ca(2+)](i), were examined in individually perfused rat mesenteric venules. Microvessel permeability was determined by measuring hydraulic conductivity (Lp). Endothelial [Ca(2+)](i), a necessary signal initiating hyperpermeability, was measured in Fura-2 loaded microvessels. B31-A3 spent medium caused a rapid and transient increase in Lp and endothelial [Ca(2+)](i). Within 2-5 min, the mean peak Lp increased to 5.6+/-0.9 times the control, and endothelial [Ca(2+)](i) increased from 113+/-11 nM to a mean peak value of 324+/-35 nM. In contrast, neither endothelial [Ca(2+)](i) nor Lp was altered by B31-A spent medium.A mediator(s) produced by virulent Bb under culture conditions directly activates endothelial cells, resulting in increases in microvessel permeability. Most importantly, the production of this mediator is associated with Bb virulence and is likely produced by one or more of the 8 plasmid(s) missing from strain B31-A

    A multifaceted ferrocene interlayer for highly stable and efficient lithium doped spiro‐OMeTAD‐based perovskite solar cells

    Get PDF
    Over the last decade, 2,2″,7,7″-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) has remained the hole transporting layer (HTL) of choice for producing high efficiency perovskite solar cells (PSCs). However, PSCs incorporating spiro-OMeTAD suffer significantly from dopant induced instability and non-ideal band alignments. Herein, a new approach is presented for tackling these issues using the functionality of organometallocenes to bind to Li+ dopant ions, rendering them immobile and reducing their impact on the degradation of PSCs. Consequently, significant improvements are observed in device stability under elevated temperature and humidity, conditions in which ion migration occurs most readily. Remarkably, PSCs prepared with ferrocene retain 70% of the initial power conversion efficiency (PCE) after a period of 1250 h as compared to only 8% in the control. Synergistically, it is also identified that ferrocene improves the hole extraction yield at the HTL interface and reduces interfacial recombination enabling PCEs to reach 23.45%. This work offers a pathway for producing highly efficient spiro-OMeTAD devices with conventional dopants via addressing the key challenge of dopant induced instability in leading PSCs
    corecore