67 research outputs found

    Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis

    Get PDF
    Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy

    Successful and unsuccessful approaches to imaging carcinoids: Comparison of a radiolabelled tryptophan hydroxylase inhibitor with a tracer of biogenic amine uptake and storage, and a somatostatin analogue

    Full text link
    A mouse mastocytoma model was used to determine the biodistribution and tumour uptake of four radiopharmaceuticals developed to target the serotonin synthetic pathway in carcinoid tumours. Three of the compounds were competitive inhibitors of the rate-limiting enzyme of serotonin synthesis, tryptophan hydroxylase. Radiolabelled iodo- dl -phenylalanine (iodine-131 PIPA) was found to have the highest uptake and tumourto-liver ratio. Four patients with known carcinoid tumours were then injected with 0.5 mCi 131 I-PIPA and imaged at 1, 4, 24 and 48 h post-injection. The radiopharmaceutical, however, failed to localize in the known tumour sites. This result was in contrast to the authors' experience of 131 I- and 123 I-MIBG imaging of carcinoid tumours. Seven patients with known metastatic carcinoid tumours, two patients with symptoms of recurrence following tumour resection, one patient with completely resected disease, and two patients with a flushing syndrome of uncertain aetiology were studied with 131 I-MIBG. Three of the seven patients with known metastatic disease had positive 131 I-MIBG scans. Both patients with clinical evidence of recurrent disease had negative scans, as did the patient who was considered to have had complete resection of her primary tumour. The two patients with idiopathic flushing syndrome also had negative scans. Among seven patients imaged with 123 I-MIBG there were four true-negative scans and one falsenegative, the latter in a patient with biochemical and CT evidence of recurrence. In a seventh patient with distant metastases there was variable uptake in some of the lesions. Four patients were studied with indium-111 penetetreodide. Two patients with metastatic carcinoid disease had positive scans, although hepatic metastases were not seen in one. Another two with idiopathic flushing syndrome had normal studies. The literature suggests that up 50% of carcinoid tumour cases are detected with 131 I-MIBG, compared to a sensitivity of 87% reported with somatostatin receptor imaging using 111 In-pentetreotide. The experience with 123 I-MIBG is much less extensive. The mechanisms of carcinoid tumour localization for each of the three classes of radiotracers are discussed and contrasted to their varying sensitivities. The relative success of 131 I-MIBG and 111 In-pentetreotide relative to 131 I-PIPA may be related to the fact that 131 I-MIBG is actively taken up and stored by the enterochromaffin cells of the tumours and 111 In-pentetreotide binds to cell surface receptors, whereas 131 I-PIPA binds to tryptophan hydroxylase, which may be present in quantities too small to permit tumours to be imaged.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46840/1/259_2005_Article_BF01731835.pd

    Antioxidant power of angiotensin-converting enzyme inhibitors in vitro

    No full text
    Aims. There is controversy regarding the potential antioxidant effect of captopril, therefore this study was performed to compare the in vitro antioxidant power of captopril with other angiotensin-converting enzyme (ACE) inhibitors. Methods. Antioxidant power of captopril, enalapril, fosinopril, perindopril, quinapril and ramipril in aqueous solution was measured using the ferric reducing (antioxidant) power (FRAP) assay; captopril was also measured in ethanolic solution. Results. Only captopril showed significant antioxidant power, demonstrating a stoichiometric factor of 1.0 in this assay. Concentration-related antioxidant power was seen in both aqueous and ethanolic solutions. Conclusions. Captopril shows antioxidant activity in vitro. This property could be relevant in vivo if captopril is concentrated in membranes, lipoproteins or at other important sites.Department of Health Technology and Informatic
    corecore