761 research outputs found
Off-line production of intense beams
Be and Be were produced by 590~MeV proton bombardment of a graphite target at PSI. Parts of this graphite target were transferred into an ISOLDE target and ion source unit and ionized with the ISOLDE resonance ionization laser ion source (RILIS). Thus intense radioactive ion beams of 300~nA of Be were produced off-line
Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations
Mutations create the genetic diversity on which selective pressures can act,
yet also create structural instability in proteins. How, then, is it possible
for organisms to ameliorate mutation-induced perturbations of protein stability
while maintaining biological fitness and gaining a selective advantage? Here we
used a new technique of site-specific chromosomal mutagenesis to introduce a
selected set of mostly destabilizing mutations into folA - an essential
chromosomal gene of E. coli encoding dihydrofolate reductase (DHFR) - to
determine how changes in protein stability, activity and abundance affect
fitness. In total, 27 E.coli strains carrying mutant DHFR were created. We
found no significant correlation between protein stability and its catalytic
activity nor between catalytic activity and fitness in a limited range of
variation of catalytic activity observed in mutants. The stability of these
mutants is strongly correlated with their intracellular abundance; suggesting
that protein homeostatic machinery plays an active role in maintaining
intracellular concentrations of proteins. Fitness also shows a significant
correlation with intracellular abundance of soluble DHFR in cells growing at
30oC. At 42oC, on the other hand, the picture was mixed, yet remarkable: a few
strains carrying mutant DHFR proteins aggregated rendering them nonviable, but,
intriguingly, the majority exhibited fitness higher than wild type. We found
that mutational destabilization of DHFR proteins in E. coli is counterbalanced
at 42oC by their soluble oligomerization, thereby restoring structural
stability and protecting against aggregation
Do bilinguals have different concepts? The case of shape and material in Japanese L2 users of English
An experiment investigated whether Japanese speakers’ categorisation of objects and substances as shape or material is influenced by acquiring English, based on Imai and Gentner (1997). Subjects were presented with an item such as a cork pyramid and asked to choose between two other items that matched it for shape (plastic pyramid) or for material (piece of cork). The hypotheses were that for simple objects the number of shape-based categorisations would increase according to experience of English and that the preference for shape and material-based categorisations of Japanese speakers of English would differ from mono¬lingual speakers of both languages. Subjects were 18 adult Japanese users of English who had lived in English-speaking countries between 6 months and 3 years (short-stay group), and 18 who had lived in English-speaking countries for 3 years or more (long-stay group). Both groups achieved above criterion on an English vocabulary test. Results were: both groups preferred material responses for simple objects and substances but not for complex objects, in line with Japanese mono¬linguals, but the long-stay group showed more shape preference than the short-stay group and also were less different from Americans. These effects of acquiring a second language on categorisation have implications for conceptual representation and methodology
Atomic Layer Deposition of Textured Li4Ti5O12 A High Power and Long Cycle Life Anode for Lithium Ion Thin Film Batteries
The zero strain Li4Ti5O12 is an attractive anode material for 3D solid state thin film batteries TFB to power upcoming autonomous sensor systems. Herein, Li4Ti5O12 thin films fabricated by atomic layer deposition ALD are electrochemically evaluated for the first time. The developed ALD process with a growth per cycle of 0.6 cycle amp; 8722;1 at 300 C enables high quality and dense spinel films with superior adhesion after annealing. The short lithium ion diffusion pathways of the nanostructured 30 nm films result in excellent electrochemical properties. Planar films reveal 98 of the theoretical capacity with 588 mAh cm amp; 8722;3 at 1 C. Substrate dependent film texture is identified as a key tuning parameter for exceptional C rate performance. The highly parallel grains of a strong out of plane 111 texture allow capacities of 278 mAh cm amp; 8722;3 at extreme rates of 200 C. Outstanding cycle performance is demonstrated, resulting in 97.9 capacity retention of the initial 366 mAh cm amp; 8722;3 after 1000 cycles at 100 C. Compared to other deposition techniques, the superior performance of ALD Li4Ti5O12 is a breakthrough towards scalable high power 3D TFB
genenames.org: the HGNC resources in 2011
The HUGO Gene Nomenclature Committee (HGNC) aims to assign a unique gene symbol and name to every human gene. The HGNC database currently contains almost 30 000 approved gene symbols, over 19 000 of which represent protein-coding genes. The public website, www.genenames.org, displays all approved nomenclature within Symbol Reports that contain data curated by HGNC editors and links to related genomic, phenotypic and proteomic information. Here we describe improvements to our resources, including a new Quick Gene Search, a new List Search, an integrated HGNC BioMart and a new Statistics and Downloads facility
Records and sequences of records from random variables with a linear trend
We consider records and sequences of records drawn from discrete time series
of the form , where the are independent and identically
distributed random variables and is a constant drift. For very small and
very large drift velocities, we investigate the asymptotic behavior of the
probability of a record occurring in the th step and the
probability that all entries are records, i.e. that . Our work is motivated by the analysis of temperature time series in
climatology, and by the study of mutational pathways in evolutionary biology.Comment: 21 pages, 7 figure
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
Maximally-localized generalized Wannier functions for composite energy bands
We discuss a method for determining the optimally-localized set of
generalized Wannier functions associated with a set of Bloch bands in a
crystalline solid. By ``generalized Wannier functions'' we mean a set of
localized orthonormal orbitals spanning the same space as the specified set of
Bloch bands. Although we minimize a functional that represents the total spread
sum_n [ _n - _n^2 ] of the Wannier functions in real space, our method
proceeds directly from the Bloch functions as represented on a mesh of
k-points, and carries out the minimization in a space of unitary matrices
U_mn^k describing the rotation among the Bloch bands at each k-point. The
method is thus suitable for use in connection with conventional
electronic-structure codes. The procedure also returns the total electric
polarization as well as the location of each Wannier center. Sample results for
Si, GaAs, molecular C2H4, and LiCl will be presented.Comment: 22 pages, two-column style with 4 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_wan
- …