352 research outputs found
Ultrafast Spin Density Wave Transition in Chromium Governed by Thermalized Electron Gas
The energy and momentum selectivity of time- and angle-resolved photoemission
spectroscopy is exploited to address the ultrafast dynamics of the
antiferromagnetic spin density wave (SDW) transition photoexcited in epitaxial
thin films of chromium. We are able to quantitatively extract the evolution of
the SDW order parameter Δ through the ultrafast phase transition and show that
Δ is governed by the transient temperature of the thermalized electron gas, in
a mean field description. The complete destruction of SDW order on a sub-100
fs time scale is observed, much faster than for conventional charge density
wave materials. Our results reveal that equilibrium concepts for phase
transitions such as the order parameter may be utilized even in the strongly
nonadiabatic regime of ultrafast photoexcitation
Azobenzene-functionalized alkanethiols in self-assembled monolayers on gold
Self-assembledmonolayers (SAMs) of 4-trifluoromethyl-azobenzene-4'-methyleneoxy-alkanethiols (CF3–C6H4–N=N–C6H4–O–(CH2) n–SH on (111)-oriented polycrystalline gold films on mica were examined by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The spectra are analyzed with the help of density-functional-theory calculations of the isolated molecule. Only one doublet is detected in the sulphur 2p spectra of the investigated SAMs, consistent with a thiolate bond of the molecule to the gold surface. The C 1s XP spectra and the corresponding XAS π* resonance exhibit a rich structure which is assigned to the carbon atoms in the different chemical surroundings. Comparing XPS binding energies of the azobenzene moiety and calculated initial-state shifts reveals comparable screening of all C 1s core holes. While the carbon 1s XPS binding energy lies below the π*-resonance excitation-energy, the reversed order is found comparing core ionization and neutral core excitation of the nitrogen 1s core-hole of the azo group. This surprising difference in core-hole binding energies is interpreted as site-dependent polarization screening and charge transfer among the densely packed aromatic moieties. We propose that a quenching of the optical excitation within the molecular layer is thus one major reason for the low trans to cis photo-isomerization rate of azobenzene in romaticaliphatic SAMs
Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses
We study ultrafast magnetization quenching of ferromagnetic iron following excitation by an optical versus a terahertz pump pulse. While the optical pump (photon energy of 3.1 eV) induces a strongly nonthermal electron distribution, terahertz excitation (4.1 meV) results in a quasithermal perturbation of the electron population. The pump-induced spin and electron dynamics are interrogated by the magneto-optic Kerr effect (MOKE). A deconvolution procedure allows us to push the time resolution down to 130 fs, even though the driving terahertz pulse is about 500 fs long. Remarkably, the MOKE signals exhibit an almost identical time evolution for both optical and terahertz pump pulses, despite the 3 orders of magnitude different number of excited electrons. We are able to quantitatively explain our results using a nonthermal model based on quasielastic spin-flip scattering. It shows that, in the small-perturbation limit, the rate of demagnetization of a metallic ferromagnet is proportional to the excess energy of the electrons, independent of the precise shape of their distribution. Our results reveal that, for simple metallic ferromagnets, the dynamics of ultrafast demagnetization and of the closely related terahertz spin transport do not depend on the pump photon energy
The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions
Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements
Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel
The excitation energy dependence of the three-hole satellites in the
L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured
using synchrotron radiation. The satellite behavior in the non-radiative
emission spectra at the L3 and L2 thresholds is compared and the influence of
the Coster-Kronig channel explored. The three-hole satellite intensity at the
L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold
attributed to resonant processes at the 2p53d9 shake-up threshold. This is
discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_
Theory of inelastic lifetimes of surface-state electrons and holes at metal surfaces
After the early suggestion by John Pendry to probe unoccupied bands at
surfaces through the time reversal of the photoemission process, the
inverse-photoemission technique yielded the first conclusive experimental
evidence for the existence of image-potential bound states at metal surfaces
and has led over the last two decades to an active area of research in
condensed-matter and surface physics. Here we describe the current status of
the many-body theory of inelastic lifetimes of these image-potential states and
also the Shockley surface states that exist near the Fermi level in the
projected bulk band gap of simple and noble metals. New calculations of the
self-energy and lifetime of surface states on Au surfaces are presented as
well, by using the approximation of many-body theory.Comment: 17 pages, 7 figures, to appear in J Phys-Condens Ma
Optical control of 4f orbital state in rare-earth metals
Information technology demands continuous increase of data-storage density.
In high-density magnetic recording media, the large magneto-crystalline
anisotropy (MCA) stabilizes the stored information against decay through
thermal fluctuations. In the latest generation storage media, MCA is so large
that magnetic order needs to be transiently destroyed by heat to enable bit
writing. Here we show an alternative approach to control high-anisotropy
magnets: With ultrashort laser pulses the anisotropy itself can be manipulated
via electronic state excitations. In rare-earth materials like terbium metal,
magnetic moment and high MCA both originate from the 4f electronic state.
Following infrared laser excitation 5d-4f electron-electron scattering
processes lead to selective orbital excitations that change the 4f orbital
occupation and significantly alter the MCA. Besides these excitations within
the 4f multiplet, 5d-4f electron transfer causes a transient change of the 4f
occupation number, which, too, strongly alters the MCA. Such MCA change cannot
be achieved by heating: The material would rather be damaged than the 4f
configuration modified. Our results show a way to overcome this limitation for
a new type of efficient magnetic storage medium. Besides potential
technological relevance, the observation of MCA-changing excitations also has
implications for a general understanding of magnetic dynamics processes on
ultrashort time scales, where the 4f electronic state affects the angular
momentum transfer between spin system and lattice.Comment: Manuscript (14 pages, 3 figures) and Supplementary Information (22
pages, 9 figures
Search for the standard model Higgs boson decaying to a pair in events with no charged leptons and large missing transverse energy using the full CDF data set
We report on a search for the standard model Higgs boson produced in
association with a vector boson in the full data set of proton-antiproton
collisions at TeV recorded by the CDF II detector at the
Tevatron, corresponding to an integrated luminosity of 9.45 fb. We
consider events having no identified charged lepton, a transverse energy
imbalance, and two or three jets, of which at least one is consistent with
originating from the decay of a quark. We place 95% credibility level upper
limits on the production cross section times standard model branching fraction
for several mass hypotheses between 90 and . For a Higgs
boson mass of , the observed (expected) limit is 6.7
(3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let
Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set
We present a search for the standard model Higgs boson produced in
association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data
collected with the CDF II detector at the Tevatron corresponding to an
integrated luminosity of 9.45 fb-1. In events consistent with the decay of the
Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a
neutrino, we set 95% credibility level upper limits on the WH production cross
section times the H->bb branching ratio as a function of Higgs boson mass. At a
Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times
the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by
PRL
- …