22 research outputs found

    Low-Power Circuits for Brain–Machine Interfaces

    Get PDF
    This paper presents work on ultra-low-power circuits for brain–machine interfaces with applications for paralysis prosthetics, stroke, Parkinson’s disease, epilepsy, prosthetics for the blind, and experimental neuroscience systems. The circuits include a micropower neural amplifier with adaptive power biasing for use in multi-electrode arrays; an analog linear decoding and learning architecture for data compression; low-power radio-frequency (RF) impedance-modulation circuits for data telemetry that minimize power consumption of implanted systems in the body; a wireless link for efficient power transfer; mixed-signal system integration for efficiency, robustness, and programmability; and circuits for wireless stimulation of neurons with power-conserving sleep modes and awake modes. Experimental results from chips that have stimulated and recorded from neurons in the zebra finch brain and results from RF power-link, RF data-link, electrode- recording and electrode-stimulating systems are presented. Simulations of analog learning circuits that have successfully decoded prerecorded neural signals from a monkey brain are also presented

    A Glucose Fuel Cell for Implantable Brain–Machine Interfaces

    Get PDF
    We have developed an implantable fuel cell that generates power through glucose oxidation, producing steady-state power and up to peak power. The fuel cell is manufactured using a novel approach, employing semiconductor fabrication techniques, and is therefore well suited for manufacture together with integrated circuits on a single silicon wafer. Thus, it can help enable implantable microelectronic systems with long-lifetime power sources that harvest energy from their surrounds. The fuel reactions are mediated by robust, solid state catalysts. Glucose is oxidized at the nanostructured surface of an activated platinum anode. Oxygen is reduced to water at the surface of a self-assembled network of single-walled carbon nanotubes, embedded in a Nafion film that forms the cathode and is exposed to the biological environment. The catalytic electrodes are separated by a Nafion membrane. The availability of fuel cell reactants, oxygen and glucose, only as a mixture in the physiologic environment, has traditionally posed a design challenge: Net current production requires oxidation and reduction to occur separately and selectively at the anode and cathode, respectively, to prevent electrochemical short circuits. Our fuel cell is configured in a half-open geometry that shields the anode while exposing the cathode, resulting in an oxygen gradient that strongly favors oxygen reduction at the cathode. Glucose reaches the shielded anode by diffusing through the nanotube mesh, which does not catalyze glucose oxidation, and the Nafion layers, which are permeable to small neutral and cationic species. We demonstrate computationally that the natural recirculation of cerebrospinal fluid around the human brain theoretically permits glucose energy harvesting at a rate on the order of at least 1 mW with no adverse physiologic effects. Low-power brain–machine interfaces can thus potentially benefit from having their implanted units powered or recharged by glucose fuel cells

    Formulation and Emulation of Quantum-Inspired Dynamical Systems With Classical Analog Circuits

    No full text
    Abstract Quantum dynamical systems are capable of powerful computation but are hard to emulate on digital computers. We show that four novel analog circuit parts can emulate the phase-coherent unitary dynamics of such systems. These four parts are: a Planck capacitance analogous to a neuronal membrane capacitance; a quantum admittance element, together with the Planck capacitance, analogous to a neuronal quadrature oscillator; a quantum transadmittance element analogous to a complex neuronal synapse; and a quantum transadmittance mixer element analogous to a complex neuronal synapse with resonant modulation. These parts may be emulated classically, with paired real-value voltages on paired Planck capacitances corresponding to the real and imaginary portions of a probability amplitude; and appropriate paired real-value currents onto these Planck capacitances corresponding to diagonal (admittance), off-diagonal (transadmittance), or controlled off-diagonal (transadmittance mixer) Hamiltonian energy terms. The superposition of 2n simultaneously phase-coherent and symmetric probability-voltage amplitudes with O(n) of these parts, in a tensor-product architecture enables analog emulation of the quantum Fourier transform (QFT). Implementation of our circuits on an analog integrated circuit in a 0.18 ÎĽm process yield experimental results consistent with mathematical theory and computer simulations for emulations of NMR, Josephson junction, and QFT dynamics. Our results suggest that linear oscillatory neuronal networks with pairs of complex subthreshold/nonspiking sine and cosine neurons that are coupled together via complex synapses to other such complex neurons can architect quantum-inspired computation with classical analog circuits. Thus, an analog-circuit mapping between quantum and neural computation, both of which exploit analog computation for powerful operation, can enable future synergies between these fields.</jats:p
    corecore