981 research outputs found

    Scaling analysis of FLIC fermion actions

    Get PDF
    The Fat Link Irrelevant Clover (FLIC) fermion action is a variant of the O(a)O(a)-improved Wilson action where the irrelevant operators are constructed using smeared links. While the use of such smearing allows for the use of highly improved definitions of the field strength tensor Fμν,F_{\mu\nu}, we show that the standard 1-loop clover term with a mean field improved coefficient cswc_{\rm sw} is sufficient to remove the O(a)O(a) errors, avoiding the need for non-perturbative tuning. This result enables efficient dynamical simulations in QCD with the FLIC fermion action.Comment: 5 pages, 3 figure

    Impact of Public Policies on Women Health in India: An Empirical Study

    Get PDF
    An effort has been made in this study to measure the impact of public policies on women health in Indian. This Paper has been divided into three parts: first part of the study shows the trend and pattern of the public policies on women health from 2004 to 2015. Secondly, this paper explored the effectiveness of the health policies and in order to find out the effectiveness, we have used Anova with post hoc test. Lastly, we have used regression analysis to find out the impact of public policies on women health in India

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas

    Full text link
    The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. To fully inhibit transport, we open an additional spin gap, thereby creating a spin-orbit coupled lattice whose spinful band structure we probe. In the presence of s-wave interactions, such systems should display induced p-wave pairing, topological superfluidity, and Majorana edge states

    Hamiltonian effective field theory study of the N∗(1440)\mathbf{N^*(1440)} resonance in lattice QCD

    Full text link
    We examine the phase shifts and inelasticities associated with the N∗(1440)N^*(1440) Roper resonance and connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian effective field theory. We explore three hypotheses for the structure of the Roper resonance. All three hypotheses are able to describe the scattering data well. In the third hypothesis the Roper resonance couples the low-lying bare basis-state component associated with the ground state nucleon with the virtual meson-baryon contributions. Here the non-trivial superpositions of the meson-baryon scattering states are complemented by bare basis-state components explaining their observation in contemporary lattice QCD calculations. The merit of this scenario lies in its ability to not only describe the observed nucleon energy levels in large-volume lattice QCD simulations but also explain why other low-lying states have been missed in today's lattice QCD results for the nucleon spectrum.Comment: 14 pages, 14 figures; version to be published in Phys. Rev.

    Hamiltonian effective field theory study of the N∗(1535)\mathbf{N^*(1535)} resonance in lattice QCD

    Full text link
    Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying JP=1/2−J^P=1/2^- nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.Comment: 5 pages, 2 figures; version published in Phys. Rev. Let
    • …
    corecore