131 research outputs found
Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group
We analyze the hamiltonian quantization of Chern-Simons theory associated to
the universal covering of the Lorentz group SO(3,1). The algebra of observables
is generated by finite dimensional spin networks drawn on a punctured
topological surface. Our main result is a construction of a unitary
representation of this algebra. For this purpose, we use the formalism of
combinatorial quantization of Chern-Simons theory, i.e we quantize the algebra
of polynomial functions on the space of flat SL(2,C)-connections on a
topological surface with punctures. This algebra admits a unitary
representation acting on an Hilbert space which consists in wave packets of
spin-networks associated to principal unitary representations of the quantum
Lorentz group. This representation is constructed using only Clebsch-Gordan
decomposition of a tensor product of a finite dimensional representation with a
principal unitary representation. The proof of unitarity of this representation
is non trivial and is a consequence of properties of intertwiners which are
studied in depth. We analyze the relationship between the insertion of a
puncture colored with a principal representation and the presence of a
world-line of a massive spinning particle in de Sitter space.Comment: 78 pages. Packages include
Introduction to representations of the canonical commutation and anticommutation relations
Lecture notes of a minicourse given at the Summer School on Large Coulomb
Systems - QED in Nordfjordeid, 2003, devoted to representations of the CCR and
CAR. Quasifree states, the Araki-Woods and Araki-Wyss representations, and the
lattice of von Neumenn algebras in a bosonic/fermionic Fock space are discussed
in detail
Coherent Compton scattering on light nuclei in the delta resonance region
Coherent Compton scattering on light nuclei in the delta resonance region is
studied in the impulse approximation and is shown to be a sensitive probe of
the in-medium properties of the delta resonance. The elementary amplitude on a
single nucleon is calculated from the unitary K-matrix approach developed
previously. Modifications of the properties of the delta resonance due to the
nuclear medium are accounted for through the self-energy operator of the delta,
calculated from the one-pion loop. The dominant medium effects such as the
Pauli blocking, mean-field modification of the nucleon and delta masses, and
particle-hole excitations in the pion propagator are consistently included in
nuclear matter.Comment: 30 pages, 11 figures, accepted for publication in Phys. Rev.
Extracellular ATP is a pro-angiogenic factor for pulmonary artery vasa vasorum endothelial cells
Expansion of the vasa vasorum network has been observed in a variety of systemic and pulmonary vascular diseases. We recently reported that a marked expansion of the vasa vasorum network occurs in the pulmonary artery adventitia of chronically hypoxic calves. Since hypoxia has been shown to stimulate ATP release from both vascular resident as well as circulatory blood cells, these studies were undertaken to determine if extracellular ATP exerts angiogenic effects on isolated vasa vasorum endothelial cells (VVEC) and/or if it augments the effects of other angiogenic factors (VEGF and basic FGF) known to be present in the hypoxic microenvironment. We found that extracellular ATP dramatically increases DNA synthesis, migration, and rearrangement into tube-like networks on Matrigel in VVEC, but not in pulmonary artery (MPAEC) or aortic (AOEC) endothelial cells obtained from the same animals. Extracellular ATP potentiated the effects of both VEGF and bFGF to stimulate DNA synthesis in VVEC but not in MPAEC and AOEC. Analysis of purine and pyrimidine nucleotides revealed that ATP, ADP and MeSADP were the most potent in stimulating mitogenic responses in VVEC, indicating the involvement of the family of P2Y1-like purinergic receptors. Using pharmacological inhibitors, Western blot analysis, and Phosphatidylinositol-3 kinase (PI3K) in vitro kinase assays, we found that PI3K/Akt/mTOR and ERK1/2 play a critical role in mediating the extracellular ATP-induced mitogenic and migratory responses in VVEC. However, PI3K/Akt and mTOR/p70S6K do not significantly contribute to extracellular ATP-induced tube formation on Matrigel. Our studies indicate that VVEC, isolated from the sites of active angiogenesis, exhibit distinct functional responses to ATP, compared to endothelial cells derived from large pulmonary or systemic vessels. Collectively, our data support the idea that extracellular ATP participates in the expansion of the vasa vasorum that can be observed in hypoxic conditions
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
BACKGROUND: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data was donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups
Genetic variability in sporadic amyotrophic lateral sclerosis
With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), there is a surge in gene testing for this disease. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagnostic setting is challenging, given the complex genetic architecture of sALS, for which there are genetic variants with large and small effect sizes. Guidelines for the interpretation of genetic variants in gene panels and for counselling of patients are lacking.
We aimed to provide a thorough characterization of genetic variability in ALS genes by applying the American College of Medical Genetics and Genomics (ACMG) criteria on whole genome sequencing data from a large cohort of 6013 sporadic ALS patients and 2411 matched controls from Project MinE.
We studied genetic variation in 90 ALS-associated genes and applied customized ACMG-criteria to identify pathogenic and likely pathogenic variants. Variants of unknown significance were collected as well. In addition, we determined the length of repeat expansions in C9orf72, ATXN1, ATXN2 and NIPA1 using the ExpansionHunter tool.
We found C9orf72 repeat expansions in 5.21% of sALS patients. In 50 ALS-associated genes, we did not identify any pathogenic or likely pathogenic variants. In 5.89%, a pathogenic or likely pathogenic variant was found, most commonly in SOD1, TARDBP, FUS, NEK1, OPTN or TBK1. Significantly more cases carried at least one pathogenic or likely pathogenic variant compared to controls (odds ratio 1.75; P-value 1.64 Ă 10â5). Isolated risk factors in ATXN1, ATXN2, NIPA1 and/or UNC13A were detected in 17.33% of cases. In 71.83%, we did not find any genetic clues. A combination of variants was found in 2.88%.
This study provides an inventory of pathogenic and likely pathogenic genetic variation in a large cohort of sALS patients. Overall, we identified pathogenic and likely pathogenic variants in 11.13% of ALS patients in 38 known ALS genes. In line with the oligogenic hypothesis, we found significantly more combinations of variants in cases compared to controls. Many variants of unknown significance may contribute to ALS risk, but diagnostic algorithms to reliably identify and weigh them are lacking. This work can serve as a resource for counselling and for the assembly of gene panels for ALS. Further characterization of the genetic architecture of sALS is necessary given the growing interest in gene testing in ALS
Which aspects of the open science agenda are most relevant to scientometric research and publishing? An opinion paper
© 2021 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.1162/qss_e_00121Open Science is an umbrella term that encompasses many recommendations for possible changes in research practices, management, and publishing with the objective to increase transparency and accessibility. This has become an important science policy issue that all disciplines should consider. Many Open Science recommendations may be valuable for the further development of research and publishing but not all are relevant to all fields. This opinion paper considers the aspects of Open Science that are most relevant for scientometricians, discussing how they can be usefully applied.The work of R.G. was supported by the Flemish Government through its funding of the Flemish Centre for R&D Monitoring (ECOOM
Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry
OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc).
METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers.
RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group.
CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies
- âŠ