217 research outputs found

    2016 Proceedings: Religious Values

    Get PDF
    Paving the Way to Global Christian Citizenshiphttps://knowledge.e.southern.edu/reysymp/1004/thumbnail.jp

    Genetic variation in FcÎł receptor IIa and risk of coronary heart disease: negative results from two large independent populations

    Get PDF
    Background The role of the Fcgamma receptor IIa (FcgammaRIIa), a receptor for C-reactive protein (CRP), the classical acute phase protein, in atherosclerosis is not yet clear. We sought to investigate the association of FcgammaRIIa genotype with risk of coronary heart disease (CHD) in two large population-based samples. Methods FcgammaRIIa-R/H131 polymorphisms were determined in a population of 527 patients with a history of myocardial infarction and 527 age and gender matched controls drawn from a population-based MONICA- Augsburg survey. In the LURIC population, 2227 patients with angiographically proven CHD, defined as having at least one stenosis [greater than or equal to]50%, were compared with 1032 individuals with stenosis H genotype was not independently associated with lower risk of CHD after multivariable adjustments, neither in the MONICA population (odds ratio (OR) 1.08; 95% confidence interval (CI) 0.81 to 1.44), nor in LURIC (OR 0.96; 95% CI 0.81 to 1.14). Conclusion Our results do not confirm an independent relationship between FcgammaRIIa genotypes and risk of CHD in these populations

    The MicroRNA-200 Family Is Upregulated in Endometrial Carcinoma

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer. The objective of this study was to identify dysregulated miRNAs in endometrioid endometrial adenocarcinoma (EEC) and the precursor lesion, complex atypical hyperplasia (CAH). METHODOLOGY: We compared the expression profiles of 723 human miRNAs from 14 cases of EEC, 10 cases of CAH, and 10 normal proliferative endometria controls using Agilent Human miRNA arrays following RNA extraction from formalin-fixed paraffin-embedded (FFPE) tissues. The expression of 4 dysregulated miRNAs was validated using real time reverse transcription-PCR. RESULTS: Forty-three miRNAs were dysregulated in EEC and CAH compared to normal controls (p<0.05). The entire miR-200 family (miR-200a/b/c, miR-141, and miR-429) was up-regulated in cases of EEC. CONCLUSIONS: This information contributes to the candidate miRNA expression profile that has been generated for EEC and shows that certain miRNAs are dysregulated in the precursor lesion, CAH. These miRNAs in particular may play important roles in tumorigenesis. Examination of miRNAs that are consistently dysregulated in various studies of EEC, like the miR-200 family, will aid in the understanding of the role that miRNAs play in tumorigenesis in this tumour type

    Diversity in Functional Organization of Class I and Class II Biotin Protein Ligase

    Get PDF
    The cell envelope of Mycobacterium tuberculosis (M.tuberculosis) is composed of a variety of lipids including mycolic acids, sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase (ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCP87, but not EcBCCP87. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the self-biotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over self-biotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL is protected from proteolysis by biotinyl-5′ AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme adapted for the high turnover of fatty acid biosynthesis

    The NAMPT inhibitor FK866 reverts the damage in spinal cord injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT) in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI), the effect of NAMPT inhibitors was examined in this setting.</p> <p>Methods</p> <p>We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI.</p> <p>Results</p> <p>Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-ι, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg), the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-ι, IL-1β, Bax expression and NF-κB activity.</p> <p>We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866.</p> <p>Conclusions</p> <p>Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors.</p

    Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions

    Get PDF
    Three spikelets are formed at each rachis node of the cultivated barley (Hordeum vulgare ssp. vulgare) spike. In two-rowed barley, the central one is fertile and the two lateral ones are sterile, whereas in the six-rowed type, all three are fertile. This characteristic is determined by the allelic constitution at the six-rowed spike 1 (vrs1) locus on the long arm of chromosome 2H, with the recessive allele (vrs1) being responsible for the six-rowed phenotype. The Vrs1 (HvHox1) gene encodes a homeodomain-leucine zipper (HD-Zip) transcription factor. Here, we show that the Vrs1 gene evolved in the Poaceae via a duplication, with a second copy of the gene, HvHox2, present on the short arm of chromosome 2H. Micro-collinearity and polypeptide sequences were both well conserved between HvHox2 and its Poaceae orthologs, but Vrs1 is unique to the barley tribe. The Vrs1 gene product lacks a motif which is conserved among the HvHox2 orthologs. A phylogenetic analysis demonstrated that Vrs1 and HvHox2 must have diverged after the separation of Brachypodium distachyon from the Pooideae and suggests that Vrs1 arose following the duplication of HvHox2, and acquired its new function during the evolution of the barley tribe. HvHox2 was expressed in all organs examined but Vrs1 was predominantly expressed in immature inflorescence

    Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize

    Get PDF
    Background: Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related ciselements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution

    Early evolution of the biotin-dependent carboxylase family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biotin-dependent carboxylases are a diverse family of carboxylating enzymes widespread in the three domains of life, and thus thought to be very ancient. This family includes enzymes that carboxylate acetyl-CoA, propionyl-CoA, methylcrotonyl-CoA, geranyl-CoA, acyl-CoA, pyruvate and urea. They share a common catalytic mechanism involving a biotin carboxylase domain, which fixes a CO<sub>2 </sub>molecule on a biotin carboxyl carrier peptide, and a carboxyl transferase domain, which transfers the CO<sub>2 </sub>moiety to the specific substrate of each enzyme. Despite this overall similarity, biotin-dependent carboxylases from the three domains of life carrying their reaction on different substrates adopt very diverse protein domain arrangements. This has made difficult the resolution of their evolutionary history up to now.</p> <p>Results</p> <p>Taking advantage of the availability of a large amount of genomic data, we have carried out phylogenomic analyses to get new insights on the ancient evolution of the biotin-dependent carboxylases. This allowed us to infer the set of enzymes present in the last common ancestor of each domain of life and in the last common ancestor of all living organisms (the cenancestor). Our results suggest that the last common archaeal ancestor had two biotin-dependent carboxylases, whereas the last common bacterial ancestor had three. One of these biotin-dependent carboxylases ancestral to Bacteria most likely belonged to a large family, the CoA-bearing-substrate carboxylases, that we define here according to protein domain composition and phylogenetic analysis. Eukaryotes most likely acquired their biotin-dependent carboxylases through the mitochondrial and plastid endosymbioses as well as from other unknown bacterial donors. Finally, phylogenetic analyses support previous suggestions about the existence of an ancient bifunctional biotin-protein ligase bound to a regulatory transcription factor.</p> <p>Conclusions</p> <p>The most parsimonious scenario for the early evolution of the biotin-dependent carboxylases, supported by the study of protein domain composition and phylogenomic analyses, entails that the cenancestor possessed two different carboxylases able to carry out the specific carboxylation of pyruvate and the non-specific carboxylation of several CoA-bearing substrates, respectively. These enzymes may have been able to participate in very diverse metabolic pathways in the cenancestor, such as in ancestral versions of fatty acid biosynthesis, anaplerosis, gluconeogenesis and the autotrophic fixation of CO<sub>2</sub>.</p

    Characteristics of Different Systems for the Solar Drying of Crops

    Get PDF
    Solar dryers are used to enable the preservation of agricultural crops, food processing industries for dehydration of fruits and vegetables, fish and meat drying, dairy industries for production of milk powder, seasoning of wood and timber, textile industries for drying of textile materials. The fundamental concepts and contexts of their use to dry crops is discussed in the chapter. It is shown that solar drying is the outcome of complex interactions particular between the intensity and duration of solar energy, the prevailing ambient relative humidity and temperature, the characteristics of the particular crop and its pre-preparation and the design and operation of the solar dryer

    Hyper-IgG4 disease: report and characterisation of a new disease

    Get PDF
    BACKGROUND: We highlight a chronic inflammatory disease we call 'hyper-IgG4 disease', which has many synonyms depending on the organ involved, the country of origin and the year of the report. It is characterized histologically by a lymphoplasmacytic inflammation with IgG4-positive cells and exuberant fibrosis, which leaves dense fibrosis on resolution. A typical example is idiopathic retroperitoneal fibrosis, but the initial report in 2001 was of sclerosing pancreatitis. METHODS: We report an index case with fever and severe systemic disease. We have also reviewed the histology of 11 further patients with idiopathic retroperitoneal fibrosis for evidence of IgG4-expressing plasma cells, and examined a wide range of other inflammatory conditions and fibrotic diseases as organ-specific controls. We have reviewed the published literature for disease associations with idiopathic, systemic fibrosing conditions and the synonyms: pseudotumour, myofibroblastic tumour, plasma cell granuloma, systemic fibrosis, xanthofibrogranulomatosis, and multifocal fibrosclerosis. RESULTS: Histology from all 12 patients showed, to varying degrees, fibrosis, intense inflammatory cell infiltration with lymphocytes, plasma cells, scattered neutrophils, and sometimes eosinophilic aggregates, with venulitis and obliterative arteritis. The majority of lymphocytes were T cells that expressed CD8 and CD4, with scattered B-cell-rich small lymphoid follicles. In all cases, there was a significant increase in IgG4-positive plasma cells compared with controls. In two cases, biopsies before and after steroid treatment were available, and only scattered plasma cells were seen after treatment, none of them expressing IgG4. Review of the literature shows that although pathology commonly appears confined to one organ, patients can have systemic symptoms and fever. In the active period, there is an acute phase response with a high serum concentration of IgG, and during this phase, there is a rapid clinical response to glucocorticoid steroid treatment. CONCLUSION: We believe that hyper-IgG4 disease is an important condition to recognise, as the diagnosis can be readily verified and the outcome with treatment is very good
    • …
    corecore