19,880 research outputs found

    Comparison of chemical profiles and effectiveness between Erxian decoction and mixtures of decoctions of its individual herbs : a novel approach for identification of the standard chemicals

    Get PDF
    Acknowledgements This study was partially supported by grants from the Seed Funding Programme for Basic Research (Project Number 201211159146 and 201411159213), the University of Hong Kong. We thank Mr Keith Wong and Ms Cindy Lee for their technical assistances.Peer reviewedPublisher PD

    Distributed and scalable XML document processing architecture for E-commerce systems

    Get PDF
    XML has became a very important emerging standard for E-commerce because of its flexibility and universality. Many software designers are actively developing new systems to handle information in XML formats. We propose a generic architecture for processing XML. We have designed an XML processing system using the latest technologies, such as XML, XSLT (XML Stylesheet Language Transformation), HTTP and Java servlets. Our design is very generic, flexible, scalable, extensible, and also suitable for distributed network environments. A main application of the architecture and the system is to support data exchange in E-commerce systems.published_or_final_versio

    On the Effect of Quantum Interaction Distance on Quantum Addition Circuits

    Full text link
    We investigate the theoretical limits of the effect of the quantum interaction distance on the speed of exact quantum addition circuits. For this study, we exploit graph embedding for quantum circuit analysis. We study a logical mapping of qubits and gates of any Ω(logn)\Omega(\log n)-depth quantum adder circuit for two nn-qubit registers onto a practical architecture, which limits interaction distance to the nearest neighbors only and supports only one- and two-qubit logical gates. Unfortunately, on the chosen kk-dimensional practical architecture, we prove that the depth lower bound of any exact quantum addition circuits is no longer Ω(logn)\Omega(\log {n}), but Ω(nk)\Omega(\sqrt[k]{n}). This result, the first application of graph embedding to quantum circuits and devices, provides a new tool for compiler development, emphasizes the impact of quantum computer architecture on performance, and acts as a cautionary note when evaluating the time performance of quantum algorithms.Comment: accepted for ACM Journal on Emerging Technologies in Computing System

    Controlled Quantum Secret Sharing

    Full text link
    We present a new protocol in which a secret multiqubit quantum state Ψ\ket{\Psi} is shared by nn players and mm controllers, where Ψ\ket{\Psi} is the encoding state of a quantum secret sharing scheme. The players may be considered as field agents responsible for carrying out a task, using the secret information encrypted in Ψ\ket{\Psi}, while the controllers are superiors who decide if and when the task should be carried out and who to do it. Our protocol only requires ancillary Bell states and Bell-basis measurements.Comment: 6 pages, 0 figure, RevTeX4; published version with minor change
    corecore