36 research outputs found

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p

    The Arabidopsis thaliana Homeobox Gene ATHB12 Is Involved in Symptom Development Caused by Geminivirus Infection

    Get PDF
    BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. CONCLUSIONS/SIGNIFICANCE: These results suggest that ATHB7 and ATHB12 may play an important role in the activation of the abnormal cell division associated with symptom development during geminivirus infection
    corecore