1,555 research outputs found
Wavefunction tomography of topological dimer chains with long-range couplings
The ability to tailor with a high accuracy the inter-site connectivity in a
lattice is a crucial tool for realizing novel topological phases of matter.
Here, we report the experimental realization of photonic dimer chains with
long-range hopping terms of arbitrary strength and phase, providing a rich
generalization of the celebrated Su-Schrieffer-Heeger model. Our experiment is
based on a synthetic dimension scheme involving the frequency modes of an
optical fiber loop platform. This setup provides direct access to both the band
dispersion and the geometry of the Bloch wavefunctions throughout the entire
Brillouin zone allowing us to extract the winding number for any possible
configuration. Finally, we highlight a topological phase transition solely
driven by a time-reversal-breaking synthetic gauge field associated with the
phase of the long-range hopping, providing a route for engineering topological
bands in photonic lattices belonging to the AIII symmetry class
Automated characterization of noise distributions in diffusion MRI data
Knowledge of the noise distribution in diffusion MRI is the centerpiece to
quantify uncertainties arising from the acquisition process. Accurate
estimation beyond textbook distributions often requires information about the
acquisition process, which is usually not available. We introduce two new
automated methods using the moments and maximum likelihood equations of the
Gamma distribution to estimate all unknown parameters using only the magnitude
data. A rejection step is used to make the framework automatic and robust to
artifacts. Simulations were created for two diffusion weightings with parallel
imaging. Furthermore, MRI data of a water phantom with different combinations
of parallel imaging were acquired. Finally, experiments on freely available
datasets are used to assess reproducibility when limited information about the
acquisition protocol is available. Additionally, we demonstrated the
applicability of the proposed methods for a bias correction and denoising task
on an in vivo dataset. A generalized version of the bias correction framework
for non integer degrees of freedom is also introduced. The proposed framework
is compared with three other algorithms with datasets from three vendors,
employing different reconstruction methods. Simulations showed that assuming a
Rician distribution can lead to misestimation of the noise distribution in
parallel imaging. Results showed that signal leakage in multiband can also lead
to a misestimation of the noise distribution. Repeated acquisitions of in vivo
datasets show that the estimated parameters are stable and have lower
variability than compared methods. Results show that the proposed methods
reduce the appearance of noise at high b-value. The proposed algorithms herein
can estimate both parameters of the noise distribution automatically, are
robust to signal leakage artifacts and perform best when used on acquired noise
maps.Comment: v3: Peer reviewed version v2: Manuscript as submitted to Medical
image analysis v1: Manuscript as submitted to Magnetic resonance in medicin
Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?
Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic‐related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa‐Carleton District School Board, tested the effect of this action by collecting traffic‐related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late‐start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early‐start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost‐effective mechanism of reducing traffic‐related pollutants in late‐start schools located near major roads
Glenohumeral joint capsular tissue tension loading correlates moderately with shear wave elastography: a cadaveric investigation
Purpose
The purpose of this study was to investigate changes in the mechanical properties of capsular tissue using shear wave elastography (SWE) and a durometer under various tensile loads, and to explore the reliability and correlation of SWE and durometer measurements to evaluate whether SWE technology could be used to assess tissue changes during capsule tensile loading.
Methods
The inferior glenohumeral joint capsule was harvested from 10 fresh human cadaveric specimens. Tensile loading was applied to the capsular tissue using 1-, 3-, 5-, and 8-kg weights. Blinded investigators measured tissue stiffness and hardness during loading using SWE and a durometer, respectively. Intraobserver reliability was established for SWE and durometer measurements using intraclass correlation coefficients (ICCs). The Pearson product-moment correlation was used to assess the associations between SWE and durometer measurements.
Results
The ICC3,5 for durometer measurements was 0.90 (95% confidence interval [CI], 0.79 to 0.96; P<0.001) and 0.95 (95% CI, 0.88 to 0.98; P<0.001) for SWE measurements. The Pearson correlation coefficient values for 1-, 3-, and 5-kg weights were 0.56 (P=0.095), 0.36 (P=0.313), and -0.56 (P=0.089), respectively. When the 1- and 3-kg weights were combined, the ICC3,5 was 0.72 (P<0.001), and it was 0.62 (P<0.001) when the 1-, 3-, and 5-kg weights were combined. The 8-kg measurements were severely limited due to SWE measurement saturation of the tissue samples.
Conclusion
This study suggests that SWE is reliable for measuring capsular tissue stiffness changes in vitro at lower loads (1 and 3 kg) and provides a baseline for the non-invasive evaluation of effects of joint loading and mobilization on capsular tissues in vivo
Effectiveness of insecticide-treated bednets in malaria prevention in Haiti: a case-control study
Background Insecticide-treated bednets (ITNs) are eff ective in preventing malaria where vectors primarily bite indoors
and late at night, but their eff ectiveness is uncertain where vectors bite outdoors and earlier in the evening. We
studied the eff ectiveness of ITNs following a mass distribution in Haiti from May to September, 2012, where the
Anopheles albimanus vector bites primarily outdoors and often when people are awake.
Methods In this case-control study, we enrolled febrile patients presenting to outpatient departments at 17 health
facilities throughout Haiti from Sept 4, 2012, to Feb 27, 2014, who were tested with malaria rapid diagnostic
tests (RDTs), and administered questionnaires on ITN use and other risk factors. Cases were defi ned by positive RDT
and controls were febrile patients from the same clinic with a negative RDT. Our primary analysis retrospectively
matched cases and controls by age, sex, location, and date, and used conditional logistic regression on the matched
sample. A sensitivity analysis used propensity scores to match patients on ITN use propensity and analyse malaria
among ITN users and non-users. Additional ITN bioeffi cacy and entomological data were collected.
Findings We enrolled 9317 patients, including 378 (4%) RDT-positive cases. 1202 (13%) patients reported ITN use.
Post-hoc matching of cases and controls yielded 362 cases and 1201 matched controls, 19% (333) of whom reported
consistent campaign net use. After using propensity scores to match on consistent campaign ITN use, 2298 patients,
including 138 (7%) RDT-positive cases, were included: 1149 consistent campaign ITN users and 1149 non-consistent
campaign ITN users. Both analyses revealed that ITNs did not signifi cantly protect against clinical malaria
(odds ratio [OR]=0·95, 95% CI 0·68–1·32, p=0·745 for case-control analysis; OR=0·95, 95% CI 0·45–1·97, p=0·884
for propensity score analysis). ITN and entomological data indicated good ITN physical integrity and bioeffi cacy, and
no permethrin resistance among local mosquitoes.
Interpretation We found no evidence that mass ITN campaigns reduce clinical malaria in this observational study in
Haiti; alternative malaria control strategies should be prioritised
Can changing the timing of outdoor air intake reduce indoor concentrations of traffic-related pollutants in schools?
Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic-related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa-Carleton District School Board, tested the effect of this action by collecting traffic-related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P \u3c 0.05) reductions in concentrations of most of the pollutants measured at the two late-start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor–outdoor temperature difference. The intervention at the early-start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost-effective mechanism of reducing traffic-related pollutants in late-start schools located near major roads. © 2015 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Health Canada
He II 4686 emission from the massive binary system in Car: constraints to the orbital elements and the nature of the periodic minima
{\eta} Carinae is an extremely massive binary system in which rapid spectrum
variations occur near periastron. Most notably, near periastron the He II
line increases rapidly in strength, drops to a minimum value,
then increases briefly before fading away. To understand this behavior, we
conducted an intense spectroscopic monitoring of the He II
emission line across the 2014.6 periastron passage using ground- and
space-based telescopes. Comparison with previous data confirmed the overall
repeatability of EW(He II ), the line radial velocities, and the
timing of the minimum, though the strongest peak was systematically larger in
2014 than in 2009 by 26%. The EW(He II ) variations, combined
with other measurements, yield an orbital period d. The observed
variability of the EW(He II ) was reproduced by a model in which
the line flux primarily arises at the apex of the wind-wind collision and
scales inversely with the square of the stellar separation, if we account for
the excess emission as the companion star plunges into the hot inner layers of
the primary's atmosphere, and including absorption from the disturbed primary
wind between the source and the observer. This model constrains the orbital
inclination to -, and the longitude of periastron to
-. It also suggests that periastron passage occurred on
d. Our model also reproduced EW(He II )
variations from a polar view of the primary star as determined from the
observed He II emission scattered off the Homunculus nebula.Comment: The article contains 23 pages and 17 figures. It has been accepted
for publication in Ap
In Utero Exposure to Persistent Organic Pollutants and Childhood Lipid Levels
Animal studies have shown that developmental exposures to polybrominated diphenyl ethers (PBDE) permanently affect blood/liver balance of lipids. No human study has evaluated associations between in utero exposures to persistent organic pollutants (POPs) and later life lipid metabolism. In this pilot, maternal plasma levels of PBDEs (BDE-47, BDE-99, BDE-100, and BDE-153) and polychlorinated biphenyls (PCB-138, PCB-153, and PCB-180) were determined at delivery in participants of GESTation and Environment (GESTE) cohort. Total cholesterol (TCh), triglycerides (TG), low- and high-density lipoproteins (LDL-C and HDL-C), total lipids (TL), and PBDEs were determined in serum of 147 children at ages 6–7. General linear regression was used to estimate the relationship between maternal POPs and child lipid levels with adjustment for potential confounders, and adjustment for childhood POPs. In utero BDE-99 was associated with lower childhood levels of TG (p = 0.003), and non-significantly with HDL-C (p = 0.06) and TL (p = 0.07). Maternal PCB-138 was associated with lower childhood levels of TG (p = 0.04), LDL-C (p = 0.04), and TL (p = 0.02). Our data indicate that in utero exposures to POPs may be associated with long lasting decrease in circulating lipids in children, suggesting increased lipid accumulation in the liver, a mechanism involved in NAFLD development, consistent with previously reported animal data
The functional and structural associations of aberrant microglial activity in major depressive disorder
Background: Major depressive disorder (MDD) is a debilitating mental illness that has been linked to increases in markers of inflammation, as well as to changes in brain functional and structural connectivity, particularly between the insula and the subgenual anterior cingulate cortex (sgACC). In this study, we directly related inflammation and dysconnectivity in treatment-resistant MDD by concurrently measuring the following: microglial activity with [18F]N-2-(fluoroethoxyl)benzyl-N-(4phenoxypyridin-3-yl)acetamide ([18F]FEPPA) positron emission tomography (PET); the severity of MDD; and functional or structural connectivity among insula or sgACC nodes. Methods: Twelve patients with treatment-resistant MDD (8 female, 4 male; mean age ± standard deviation 54.9 ± 4.5 years and 23 healthy controls (11 female, 12 male; 60.3 ± 8.5 years) completed a hybrid [18F]FEPPA PET and MRI acquisition. From these, we extracted relative standardized uptake values for [18F]FEPPA activity and Pearson r-to-z scores representing functional connectivity from our regions of interest. We extracted diffusion tensor imaging metrics from the cingulum bundle, a key white matter bundle in MDD. We performed regressions to relate microglial activity with functional connectivity, structural connectivity and scores on the 17-item Hamilton Depression Rating Scale. Results: We found significantly increased [18F]FEPPA uptake in the left sgACC in patients with treatment-resistant MDD compared to healthy controls. Patients with MDD also had a reduction in connectivity between the sgACC and the insula. The [18F]FEPPA uptake in the left sgACC was significantly related to functional connectivity with the insula, and to the structural connectivity of the cingulum bundle. [18F]FEPPA uptake also predicted scores on the Hamilton Depression Rating Scale. Limitations: A relatively small sample size, lack of functional task data and concomitant medication use may have affected our findings. Conclusion: We present preliminary evidence linking a network-level dysfunction relevant to the pathophysiology of depression and related to increased microglial activity in MDD
- …