357 research outputs found

    The nature and evolution of Ultraluminous Infrared Galaxies: A mid-infrared spectroscopic survey

    Get PDF
    We report the first results of a low resolution mid-infrared spectroscopic survey of an unbiased, far-infrared selected sample of 60 ultraluminous infrared galaxies, using ISOPHOT-S on board ISO. We use the ratio of the 7.7um `PAH' emission feature to the local continuum as a discriminator between starburst and AGN activity. About 80% of all the ULIRGs are found to be predominantly powered by star formation but the fraction of AGN powered objects increases with luminosity. Observed ratios of the PAH features in ULIRGs differ slightly from those in lower luminosity starbursts. This can be plausibly explained by the higher extinction and/or different physical conditions in the interstellar medium of ULIRGs. The PAH feature-to-continuum ratio is anticorrelated with the ratio of feature-free 5.9um continuum to the IRAS 60um continuum, confirming suggestions that strong mid-IR continuum is a prime AGN signature. The location of starburst-dominated ULIRGs in such a diagram is consistent with previous ISO-SWS spectroscopy which implies significant extinction even in the mid-infrared. We have searched for indications that ULIRGs which are advanced mergers might be more AGN-like, as postulated by the classical evolutionary scenario. No such trend has been found amongst those objects for which near infrared images are available to assess their likely merger status.Comment: aastex, 4 eps figures. Revised version, accepted by ApJ (Letters

    Discovery of strongly blue shifted mid-infrared [NeIII] and [NeV] emission in ULIRGs

    Full text link
    We report the discovery of blue shifted (delta(V) > 200 km/s) mid-infrared [NeIII] and/or [NeV] emission in 25 out of 82 ULIRGs (30% of our sample). The incidence of blue shifted [NeV] emission is even higher (59%) among the sources with a [NeV] detection -- the tell-tale signature of an active galactic nucleus (AGN). Sixteen ULIRGs in our sample, eleven of which are optically classified as AGN, have [NeIII] blue shifts above 200 km/s. A comparison of the line profiles of their 12.81um [NeII], 15.56um [NeIII] and 14.32um [NeV] lines reveals the ionization of the blue shifted gas to increase with blue shift, implying decelerating outflows in a stratified medium, photo-ionized by the AGN. The strong correlation of the line width of the [NeIII] line with the radio luminosity indicates that interaction of expanding radio jets with the dense ISM surrounding the AGN may explain the observed neon line kinematics for the strongest radio sources in this sample.Comment: Accepted for publication by ApJ Letters. 15 pages, 4 figure

    The Infrared Database of Extragalactic Observables from Spitzer I: the redshift catalog

    Full text link
    This is the first of a series of papers on the Infrared Database of Extragalactic Observables from Spitzer (IDEOS). In this work we describe the identification of optical counterparts of the infrared sources detected in Spitzer Infrared Spectrograph (IRS) observations, and the acquisition and validation of redshifts. The IDEOS sample includes all the spectra from the Cornell Atlas of Spitzer/IRS Sources (CASSIS) of galaxies beyond the Local Group. Optical counterparts were identified from correlation of the extraction coordinates with the NASA Extragalactic Database (NED). To confirm the optical association and validate NED redshifts, we measure redshifts with unprecedented accuracy on the IRS spectra ({\sigma}(dz/(1+z))=0.0011) by using an improved version of the maximum combined pseudo-likelihood method (MCPL). We perform a multi-stage verification of redshifts that considers alternate NED redshifts, the MCPL redshift, and visual inspection of the IRS spectrum. The statistics is as follows: the IDEOS sample contains 3361 galaxies at redshift 0<z<6.42 (mean: 0.48, median: 0.14). We confirm the default NED redshift for 2429 sources and identify 124 with incorrect NED redshifts. We obtain IRS-based redshifts for 568 IDEOS sources without optical spectroscopic redshifts, including 228 with no previous redshift measurements. We provide the entire IDEOS redshift catalog in machine-readable formats. The catalog condenses our compilation and verification effort, and includes our final evaluation on the most likely redshift for each source, its origin, and reliability estimates.Comment: 11 pages, 6 figures, 1 table. Accepted for publication in MNRAS. Full redshift table in machine-readable format available at http://ideos.astro.cornell.edu/redshifts.htm

    Mid-infrared emission of galactic nuclei: TIMMI2 versus ISO observations and models

    Full text link
    We investigate the mid-infrared radiation of galaxies that are powered by a starburst or by an AGN. For this end, we compare the spectra obtained at different spatial scales in a sample of infrared bright galaxies. ISO observations which include emission of the nucleus as well as most of the host galaxy are compared with TIMMI2 spectra of the nuclear region. We find that ISO spectra are generally dominated by strong PAH bands. However, this is no longer true when inspecting the mid-infrared emission of the pure nucleus. Here PAH emission is detected in starbursts whereas it is significantly reduced or completely absent in AGNs. A physical explanation of these new observational results is presented by examining the temperature fluctuation of a PAH after interaction with a photon. It turns out that the hardness of the radiation field is a key parameter for quantifying the photo-destruction of small grains. Our theoretical study predicts PAH evaporation in soft X-ray environments. Radiative transfer calculations of clumpy starbursts and AGN corroborate the observational fact that PAH emission is connected to starburst activity whereas PAHs are destroyed near an AGN. The radiative transfer models predict for starbursts a much larger mid-infrared size than for AGN. This is confirmed by our TIMMI2 acquisition images: We find that the mid-infrared emission of Seyferts is dominated by a compact core while most of the starbursts are spatially resolved.Comment: 19 pages, 22 Figures, accepted by A&

    Mid-infrared spectral evidence for a luminous dust enshrouded source in Arp220

    Full text link
    We have re-analyzed the 6-12 micron ISO spectrum of the ultra-luminous infrared galaxy Arp220 with the conclusion that it is not consistent with that of a scaled up version of a typical starburst. Instead, both template fitting with spectra of the galaxies NGC4418 and M83 and with dust models suggest that it is best represented by combinations of a typical starburst component, exhibiting PAH emission features, and a heavily absorbed dust continuum which contributes ~40% of the 6-12 micron flux and likely dominates the luminosity. Of particular significance relative to previous studies of Arp220 is the fact that the emission feature at 7.7 micron comprises both PAH emission and a broader component resulting from ice and silicate absorption against a heavily absorbed continuum. Extinction to the PAH emitting source, however, appears to be relatively low. We tentatively associate the PAH emitting and heavily dust/ice absorbed components with the diffuse emission region and the two compact nuclei respectively identified by Soifer et al. (2002) in their higher spatial resolution 10 micron study. Both the similarity of the absorbed continuum with that of the embedded Galactic protostars and results of the dust models imply that the embedded source(s) in Arp220 could be powered by, albeit extremely dense, starburst activity. Due to the high extinction, it is not possible with the available data to exclude that AGN(s) also contribute some or all of the observed luminosity. In this case, however, the upper limit measured for its hard X-ray emission would require Arp220 to be the most highly obscured AGN known.Comment: 11 pages, 9 figures. Accepted for publication in A&A. Also available at http://www.astro.rug.nl/~spoon/publications.htm

    Mid-infrared properties of OH megamaser host galaxies. I: Spitzer IRS low- and high-resolution spectroscopy

    Get PDF
    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L_OH = 10^2.3 L_sun. The majority of galaxies display moderate-to-deep 9.7 um amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 um continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 um, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. 50% of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains (HACs), while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 um OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.Comment: 28 pages, 10 figures; accepted to ApJS. Ancillary data includes full IRS spectra of the complete sampl

    The extraordinary mid-infrared spectral properties of FeLoBAL Quasars

    Get PDF
    We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.Comment: ApJ, accepte
    corecore