187 research outputs found

    Floquet-Markov description of the parametrically driven, dissipative harmonic quantum oscillator

    Get PDF
    Using the parametrically driven harmonic oscillator as a working example, we study two different Markovian approaches to the quantum dynamics of a periodically driven system with dissipation. In the simpler approach, the driving enters the master equation for the reduced density operator only in the Hamiltonian term. An improved master equation is achieved by treating the entire driven system within the Floquet formalism and coupling it to the reservoir as a whole. The different ensuing evolution equations are compared in various representations, particularly as Fokker-Planck equations for the Wigner function. On all levels of approximation, these evolution equations retain the periodicity of the driving, so that their solutions have Floquet form and represent eigenfunctions of a non-unitary propagator over a single period of the driving. We discuss asymptotic states in the long-time limit as well as the conservative and the high-temperature limits. Numerical results obtained within the different Markov approximations are compared with the exact path-integral solution. The application of the improved Floquet-Markov scheme becomes increasingly important when considering stronger driving and lower temperatures.Comment: 29 pages, 7 figure

    Magnetic operations: a little fuzzy physics?

    Full text link
    We examine the behaviour of charged particles in homogeneous, constant and/or oscillating magnetic fields in the non-relativistic approximation. A special role of the geometric center of the particle trajectory is elucidated. In quantum case it becomes a 'fuzzy point' with non-commuting coordinates, an element of non-commutative geometry which enters into the traditional control problems. We show that its application extends beyond the usually considered time independent magnetic fields of the quantum Hall effect. Some simple cases of magnetic control by oscillating fields lead to the stability maps differing from the traditional Strutt diagram.Comment: 28 pages, 8 figure

    Quantum singular oscillator as a model of two-ion trap: an amplification of transition probabilities due to small time variations of the binding potential

    Full text link
    Following the paper by M. Combescure [Ann. Phys. (NY) 204, 113 (1990)], we apply the quantum singular time dependent oscillator model to describe the relative one dimensional motion of two ions in a trap. We argue that the model can be justified for low energy excited states with the quantum numbers nnmax100n\ll n_{max}\sim 100, provided that the dimensionless constant characterizing the strength of the repulsive potential is large enough, g105g_*\sim 10^5. Time dependent Gaussian-like wave packets generalizing odd coherent states of the harmonic oscillator, and excitation number eigenstates are constructed. We show that the relative motion of the ions, in contradistinction to its center of mass counterpart, is extremely sensitive to the time dependence of the binding harmonic potential, since the large value of gg_* results in a significant amplification of the transition probabilities between energy eigenstate even for slow time variations of the frequency.Comment: 19 pages, LaTeX, 5 eps-figures, to appear on Phys. Rev. A, one reference correcte

    The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity

    Get PDF
    We describe a six-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding photons statistics are discussed and some applications to quantum optics, cavity quantum electrodynamics, and superfocusing in channeling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys., Special Issue celebrating the 20th anniversary of quantum state engineering (R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201

    Zur Frage der Zentralnervösen Regulation des Eiweisstoffwechsels

    No full text

    Direktbestimmung der Serum-?Lipoxyde?

    No full text

    Eine halbautomatische Methode für die Bestimmung der unveresterten Fettsäuren im Serum

    No full text
    corecore