1,653 research outputs found

    Transition-Metal-Doping of CaO as Catalyst for the OCM Reaction, a Reality Check

    Get PDF
    In this study, first-row transition metal-doped calcium oxide materials (Mn, Ni, Cr, Co., and Zn) were synthesized, characterized, and tested for the OCM reaction. Doped carbonate precursors were prepared by a co-precipitation method. The synthesis parameters were optimized to yield materials with a pure calcite phase, which was verified by XRD. EPR measurements on the doped CaO materials indicate a successful substitution of Ca2+ with transition metal ions in the CaO lattice. The materials were tested for their performance in the OCM reaction, where a beneficial effect towards selectivity and activity effect could be observed for Mn, Ni, and Zn-doped samples, where the selectivity of Co- and Cr-doped CaO was strongly reduced. The optimum doping concentration could be identified in the range of 0.04-0.10 atom%, showing the strongest decrease in the apparent activation energy, as well as the maximum increase in selectivity

    A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Get PDF
    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic species with a density of approximately 5 × 1011 spins/cm2, which is comparable to the limit obtained for the presently available UHV-EPR spectrometer operating at 10 GHz (X-band). Investigation of electron trapped centers in MgO(001) films shows that the increased resolution offered by the experiments at W-band allows to identify new paramagnetic species, that cannot be differentiated with the currently available methodology

    Challenging assumptions of the enlargement literature : the impact of the EU on human and minority rights in Macedonia

    Get PDF
    This article argues that from the very start of the transition process in Macedonia, a fusion of concerns about security and democratisation locked local nationalist elites and international organisations intoa political dynamic that prioritised security over democratisation. This dynamic resulted in little progress in the implementation of human and minority rights until 2009, despite heavy EU involvement in Macedonia after the internal warfare of 2001. The effects of this informally institutionalised relationship have been overlooked by scholarship on EU enlargement towards Eastern Europe, which has made generalisations based on assumptions relevant to the democratisation of countries in Eastern Europe, but not the Western Balkans

    Strength and ductility with 10 11 10 12 double twinning in a magnesium alloy

    Get PDF
    Based on their high specific strength and stiffness, magnesium alloys are attractive for lightweight applications in aerospace and transportation, where weight saving is crucial for the reduction of carbon dioxide emissions. Unfortunately, the ductility of magnesium alloys is usually limited. It is thought that one reason for the lack of ductility is that the development of double twins DTW cause premature failure of magnesium alloys. Here we show with a magnesium alloy containing 4 amp; 8201;wt lithium, that the same impressively large compression failure strains can be achieved with DTWs as without. The DTWs form stably across the microstructure and continuously throughout straining, forming three dimensional intra granular networks, a potential strengthening mechanism. We rationalize that relatively easier lt;c a gt; slip characteristic of this alloy plastically relaxed the localized stress concentrations that DTWs can generate. This result may provide key insight and an alternative perspective towards designing formable and strong magnesium alloy

    The 1999 Hercules X-1 Anomalous Low State

    Full text link
    A failed main-on in the 35d cycle of Her X-1 was observed with the Rossi X-Ray Timing Explorer (RXTE) on 1999 April 26. Exceptions to the normal 35d cycle have been seen only twice before; in 1983 and again 1993. We present timing and spectral results of this latest Anomalous Low State (ALS) along with comparisons to the main-on and normal low states. Pulsations were observed in the 3-18 keV band with a fractional RMS variation of (0.037+-0.003). Spectral analysis indicates that the ALS spectrum has the same shape as the main-on but is modified by heavy absorption and scattering. We find that 70% of the observed emission has passed through a cold absorber (N_H=5.0x10^{23}cm^{-2}). This partially absorbing spectral fit can be applied to the normal low state with similar results. We find that the ALS observations may be interpreted as a decrease in inclination of the accretion disk causing the central X-Ray source to be obscured over the entire 35d cycle.Comment: revised text, 6 revised figures, accepted for publication in Ap

    Photon air showers at ultra-high energy and the photonuclear cross-section

    Full text link
    Experimental conclusions from air shower observations on cosmic-ray photons above 10^19 eV are based on the comparison to detailed shower simulations. For the calculations, the photonuclear cross-section needs to be extrapolated over several orders of magnitude in energy. The uncertainty from the cross-section extrapolation translates into an uncertainty of the predicted shower features for primary photons and, thus, into uncertainties for a possible data interpretation. After briefly reviewing the current status of ultra-high energy photon studies, the impact of the uncertainty of the photonuclear cross-section for shower calculations is investigated. Estimates for the uncertainties in the main shower observables are provided. Photon discrimination is shown to be possible even for rapidly rising cross-sections. When photon-initiated showers are identified, it is argued that the sensitivity of photon shower observables to the photonuclear cross-section can in turn be exploited to constrain the cross-section at energies not accessible at colliders.Comment: Based on a talk presented at the international conference "From Colliders to Cosmic Rays", Prague, September 7-13 (2005

    Locating regional health policy: Institutions, politics, and practices

    Get PDF
    Poverty reduction and health became central in the agendas of Southern regional organisations in the last two decades. Yet, little is known about how these organisations address poverty, inclusion and social inequality, and how Southern regional formations are engaging in power constellations, institutions, processes, interests and ideological positions within different spheres of governance. This article reviews academic literatures spanning global social policy, regional studies and diplomacy studies, and the state of knowledge and understanding of the ‘place’ of regional actors in health governance as a global political practice therein. It identifies theoretical and thematic points of connection between disparate literatures and how these can be bridged through research focusing on the social policies of regional organisations and regional integration processes. This framework hence locates the contributions of each of the research articles of this Special Issue of Global Social Policy on the regional dimension of health policy and diplomacy in relation to Southern Africa and South America. It also highlights the ways in which the articles bring new evidence about how social relations of welfare are being (re)made over larger scales and how regional actors may initiate new norms to improve health rights in international arenas engaging in new forms of ‘regional’ diplomacy

    Large scale cosmic-ray anisotropy with KASCADE

    Full text link
    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.Comment: accepted by The Astrophysical Journa
    corecore