1,314 research outputs found
Functional integral treatment of some quantum nondemolition systems
In the scheme of a quantum nondemolition (QND) measurement, an observable is
measured without perturbing its evolution. In the context of studies of
decoherence in quantum computing, we examine the `open' quantum system of a
two-level atom, or equivalently, a spin-1/2 system, in interaction with quantum
reservoirs of either oscillators or spins, under the QND condition of the
Hamiltonian of the system commuting with the system-reservoir interaction. For
completeness, we also examine the well-known non-QND spin-Bose problem. For all
these many-body systems, we use the methods of functional integration to work
out the propagators. The propagators for the QND Hamiltonians are shown to be
analogous to the squeezing and rotation operators, respectively, for the two
kinds of baths considered. Squeezing and rotation being both phase space
area-preserving canonical transformations, this brings out an interesting
connection between the energy-preserving QND Hamiltonians and the homogeneous
linear canonical transformations.Comment: 16 pages, no figure
A global disorder of imprinting in the human female germ line
Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment
Time evolution of the Rabi Hamiltonian from the unexcited vacuum
The Rabi Hamiltonian describes a single mode of electromagnetic radiation
interacting with a two-level atom. Using the coupled cluster method, we
investigate the time evolution of this system from an initially empty field
mode and an unexcited atom. We give results for the atomic inversion and field
occupation, and find that the virtual processes cause the field to be squeezed.
No anti-bunching occurs.Comment: 25 pages, 8 figures, RevTe
Geometric and dynamic perspectives on phase-coherent and noncoherent chaos
Statistically distinguishing between phase-coherent and noncoherent chaotic
dynamics from time series is a contemporary problem in nonlinear sciences. In
this work, we propose different measures based on recurrence properties of
recorded trajectories, which characterize the underlying systems from both
geometric and dynamic viewpoints. The potentials of the individual measures for
discriminating phase-coherent and noncoherent chaotic oscillations are
discussed. A detailed numerical analysis is performed for the chaotic R\"ossler
system, which displays both types of chaos as one control parameter is varied,
and the Mackey-Glass system as an example of a time-delay system with
noncoherent chaos. Our results demonstrate that especially geometric measures
from recurrence network analysis are well suited for tracing transitions
between spiral- and screw-type chaos, a common route from phase-coherent to
noncoherent chaos also found in other nonlinear oscillators. A detailed
explanation of the observed behavior in terms of attractor geometry is given.Comment: 12 pages, 13 figure
SMaRT-OnlineWDN: A Franco-German Project For The Online Security Management Of Water Distribution Networks
Water Distribution Networks (WDNs) are critical infrastructures that are exposed to deliberate or accidental chemical, biological or radioactive contamination which need to be detected in due time. However, until now, no monitoring system is capable of protecting a WDN in real time. Powerful online sensor systems are currently developed and the prototypes are able to detect a small change in water quality. In the immediate future, water service utilities will install their networks with water quantity and water quality sensors. For taking appropriate decisions and countermeasures, WDN operators will need to dispose of: 1) a fast and reliable detection of abnormal events in the WDNs; 2) reliable online models both for the hydraulics and water quality predictions; 3) methods for contaminant source identification backtracking from the data history. Actually, in general none of these issues (1) – (3) are available at the water suppliers. Consequently, the main objective of the project SMaRT-OnlineWDN is the development of an online security management toolkit for WDNs that is based on sensor measurements of water quality as well as water quantity. Its main innovations are the detection of abnormal events with a binary classifier of high accuracy and the generation of real-time, reliable (i) flow and pressure predictions, (ii) water quality indicator predictions of the whole water network. Detailed information regarding contamination sources (localization and intensity) will be explored by means of the online running model, which is automatically calibrated to the measured sensor data. Its field of application ranges from the detection of deliberate contamination including source identification and decision support for effective countermeasures to improved operation and control of a WDN under normal and abnormal conditions (dual benefit).In this project, the technical research work is completed with a sociological, economical and management analysis
Polaronic excitations in CMR manganite films
In the colossal magnetoresistance manganites polarons have been proposed as
the charge carrier state which localizes across the metal-insulator transition.
The character of the polarons is still under debate. We present an assessment
of measurements which identify polarons in the metallic state of
La{2/3}Sr{1/3}MnO{3} (LSMO) and La{2/3}Ca{1/3}MnO{3} (LCMO) thin films. We
focus on optical spectroscopy in these films which displays a pronounced
resonance in the mid-infrared. The temperature dependent resonance has been
previously assigned to polaron excitations. These polaronic resonances are
qualitatively distinct in LSMO and LCMO and we discuss large and small polaron
scenarios which have been proposed so far. There is evidence for a large
polaron excitation in LSMO and small polarons in LCMO. These scenarios are
examined with respect to further experimental probes, specifically charge
carrier mobility (Hall-effect measurements) and high-temperature
dc-resistivity.Comment: 16 pages, 10 figure
Small and large polarons in nickelates, manganites, and cuprates
By comparing the optical conductivities of La_{1.67}Sr_{0.33}NiO_{4} (LSNO),
Sr_{1.5}La_{0.5}MnO_4 (SLMO), Nd_2CuO_{4-y} (NCO), and
Nd_{1.96}Ce_{0.04}CuO_{4} (NCCO), we have identified a peculiar behavior of
polarons in this cuprate family. While in LSNO and SLMO small polarons localize
into ordered structures below a transition temperature, in those cuprates the
polarons appear to be large, and at low T their binding energy decreases. This
reflects into an increase of the polaron radius, which may trigger coherent
transport.Comment: File latex, 15 p. incl. 4 Figs. epsf, to appear on the Journal of
Superconductivity - Proc. "Stripes 1996" - Roma Dec 199
Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase
This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.EAR is a Herchel Smith Fellow. MB and HB are supported by the Centre for
Trophoblast Research, MB is a Next Generation Research Fellow. MJB is
supported by a BBSRC studentship. The WR lab is supported by BBSRC, MRC,
the Wellcome Trust, EU EpiGeneSys and BLUEPRINT. The SB lab is supported
by core funding from Cancer Research UK
Dnmt2-dependent methylomes lack defined DNA methylation patterns
Several organisms have retained methyltransferase 2 (Dnmt2) as their only candidate DNA methyltransferase gene. However, information about Dnmt2-dependent methylation patterns has been limited to a few isolated loci and the results have been discussed controversially. In addition, recent studies have shown that Dnmt2 functions as a tRNA methyltransferase, which raised the possibility that Dnmt2-only genomes might be unmethylated. We have now used whole-genome bisulfite sequencing to analyze the methylomes of Dnmt2-only organisms at single-base resolution. Our results show that the genomes of Schistosoma mansoni and Drosophila melanogaster lack detectable DNA methylation patterns. Residual unconverted cytosine residues shared many attributes with bisulfite deamination artifacts and were observed at comparable levels in Dnmt2-deficient flies. Furthermore, genetically modified Dnmt2-only mouse embryonic stem cells lost the DNA methylation patterns found in wild-type cells. Our results thus uncover fundamental differences among animal methylomes and suggest that DNA methylation is dispensable for a considerable number of eukaryotic organisms
Conductivity of CuO-Chains: Disorder versus Electron-Phonon Coupling
The optical conductivity of the CuO-chains, a subsystem of the 1-2-3
materials, is dominated by a broad peak in the mid-infrared (eV), and a slowly falling high-frequency tail. The 1D --model is
proposed as the relevant low-energy Hamiltonian describing the intrinsic
electronic structure of the CuO-chains. However, due to charge-spin
decoupling, this model alone cannot reproduce the observed \sw. We consider
two additional scattering mechanisms: (i) Disregarding the not so crucial spin
degrees of freedom, the inclusion of strong potential disorder yields excellent
agreement with experiment, but suffers from the unreasonable value of the
disorder strength necessary for the fit. (ii) Moderately strong polaronic
electron-phonon coupling to the mode involving Cu(1)-O(4) stretching, can be
modeled within a 1D Holstein Hamiltonian of spinless fermions. Using a
variational approximation for the phonon Hilbert space, we diagonalize the
Hamiltonian exactly on finite lattices. As a result of the experimental hole
density , the chains can exhibit strong charge-density-wave (CDW)
correlations, driven by phonon-mediated polaron-polaron interactions. In the
vicinity of half filling, charge motion is identified as arising from moving
domain walls, \ie defects in the CDW. Incorporating the effect of vacancy
disorder by choosing open boundary conditions, good agreement with the
experimental spectra is found. In particular, a high-frequency tail arises as a
consequence of the polaron-polaron interactions.Comment: 42 pages, ETH-TH/93-31 (Postscript
- …