114 research outputs found
Size-selective nanoparticle growth on few-layer graphene films
We observe that gold atoms deposited by physical vapor deposition onto few
layer graphenes condense upon annealing to form nanoparticles with an average
diameter that is determined by the graphene film thickness. The data are well
described by a theoretical model in which the electrostatic interactions
arising from charge transfer between the graphene and the gold particle limit
the size of the growing nanoparticles. The model predicts a nanoparticle size
distribution characterized by a mean diameter D that follows a scaling law D
proportional to m^(1/3), where m is the number of carbon layers in the few
layer graphene film.Comment: 15 pages, 4 figure
A Genome Wide Association Study of arabinoxylan content in 2-row spring barley grain
In barley endosperm arabinoxylan (AX) is the second most abundant cell wall polysaccharide and in wheat it is the most abundant polysaccharide in the starchy endosperm walls of the grain. AX is one of the main contributors to grain dietary fibre content providing several health benefits including cholesterol and glucose lowering effects, and antioxidant activities. Due to its complex structural features, AX might also affect the downstream applications of barley grain in malting and brewing. Using a high pressure liquid chromatography (HPLC) method we quantified AX amounts in mature grain in 128 spring 2-row barley accessions. Amounts ranged from ~ 5.2 ÎĽg/g to ~ 9 ÎĽg/g. We used this data for a Genome Wide Association Study (GWAS) that revealed three significant quantitative trait loci (QTL) associated with grain AX levels which passed a false discovery threshold (FDR) and are located on two of the seven barley chromosomes. Regions underlying the QTLs were scanned for genes likely to be involved in AX biosynthesis or turnover, and strong candidates, including glycosyltransferases from the GT43 and GT61 families and glycoside hydrolases from the GH10 family, were identified. Phylogenetic trees of selected gene families were built based on protein translations and were used to examine the relationship of the barley candidate genes to those in other species. Our data reaffirms the roles of existing genes thought to contribute to AX content, and identifies novel QTL (and candidate genes associated with them) potentially influencing the AX content of barley grain. One potential outcome of this work is the deployment of highly associated single nucleotide polymorphisms markers in breeding programs to guide the modification of AX abundance in barley grain
- …