64 research outputs found

    The Impact of Nuclear Reaction Rate Uncertainties on Evolutionary Studies of the Nova Outburst

    Get PDF
    The observable consequences of a nova outburst depend sensitively on the details of the thermonuclear runaway which initiates the outburst. One of the more important sources of uncertainty is the nuclear reaction data used as input for the evolutionary calculations. A recent paper by Starrfield, Truran, Wiescher, & Sparks (1998) has demonstrated that changes in the reaction rate library used within a nova simulation have significant effects, not just on the production of individual isotopes (which can change by an order of magnitude), but on global observables such as the peak luminosity and the amount of mass ejected. We present preliminary results of systematic analyses of the impact of reaction rate uncertainties on nova nucleosynthesis.Comment: 4 pages, 3 figures. to appear in "Cosmic Explosions", proceeding of the 10th Annual October Astrophysics Conference in Maryland (ed. S.S. Holt and W. W. Zhang

    Silicon Burning II: Quasi-Equilibrium and Explosive Burning

    Full text link
    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, Hix & Thielemann (1996), we now turn our attention to explosive silicon burning. Previous authors have shown that for material which is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories; \emph{incomplete burning}, \emph{normal freezeout} and \emph{α\alpha-rich freezeout}, with the outcome depending on the temperature, density and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3 GK, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout and particularly for α\alpha-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium.Comment: 27 pages, including 15 inline figures. LaTeX 2e with aaspp4 and graphicx packages. Accepted to Ap

    Simulation of the Spherically Symmetric Stellar Core Collapse, Bounce, and Postbounce Evolution of a 13 Solar Mass Star with Boltzmann Neutrino Transport, and Its Implications for the Supernova Mechanism

    Full text link
    With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13 solar mass star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We are motivated to consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained. We discuss the ramifications of our results for the supernova mechanism.Comment: 5 pages, 3 figures, Submitted to Physical Review Letter

    Hypernova Nucleosynthesis and Implications for Cosmic Chemical Evolution

    Get PDF
    We examine the characteristics of nucleosynthesis in 'hypernovae', i.e., supernovae with very large explosion energies (\gsim 10^{52} ergs). Implications for the cosmic chemical evolution and the abundances in M82 are discussed.Comment: To appear in 'Cosmic Evolution' Conference at IAP, Paris, honoring Jean Audouze and Jim Truran, 13-17 Nov 200

    General Relativistic Simulations of Stellar Core Collapse and Postbounce Evolution with Boltzmann Neutrino Transport

    Full text link
    We present self-consistent general relativistic simulations of stellar core collapse, bounce, and postbounce evolution for 13, 15, and 20 solar mass progenitors in spherical symmetry. Our simulations implement three-flavor Boltzmann neutrino transport and standard nuclear physics. The results are compared to our corresponding simulations with Newtonian hydrodynamics and O(v/c) Boltzmann transport.Comment: 6 pages, 3 figures, to appear in Proceedings of the 20th Texas Symposium on Relativistic Astrophysics, edited by J.C. Wheeler and H. Martel (American Institute of Physics
    • 

    corecore