1,502 research outputs found
The Fulling-Unruh effect in general stationary accelerated frames
We study the generalized Unruh effect for accelerated reference frames that
include rotation in addition to acceleration. We focus particularly on the case
where the motion is planar, with presence of a static limit in addition to the
event horizon. Possible definitions of an accelerated vacuum state are examined
and the interpretation of the Minkowski vacuum state as a thermodynamic state
is discussed. Such athermodynamic state is shown to depend on two parameters,
the acceleration temperature and a drift velocity, which are determined by the
acceleration and angular velocity of the accelerated frame. We relate the
properties of Minkowski vacuum in the accelerated frame to the excitation
spectrum of a detector that is stationary in this frame. The detector can be
excited both by absorbing positive energy quanta in the "hot" vacuum state and
by emitting negative energy quanta into the "ergosphere" between the horizon
and the static limit. The effects are related to similar effects in the
gravitational field of a rotating black hole.Comment: Latex, 39 pages, 5 figure
Analytic Evaluation of the Decay Rate for Accelerated Proton
We evaluate the decay rate of the uniformly accelerated proton. We obtain an
analytic expression for inverse beta decay process caused by the acceleration.
We evaluate the decay rate both from the inertial frame and from the
accelerated frame where we should consider thermal radiation by Unruh effect.
We explicitly check that the decay rates obtained in both frame coincide with
each other.Comment: 11 page
Quantifying Self-Organization with Optimal Predictors
Despite broad interest in self-organizing systems, there are few
quantitative, experimentally-applicable criteria for self-organization. The
existing criteria all give counter-intuitive results for important cases. In
this Letter, we propose a new criterion, namely an internally-generated
increase in the statistical complexity, the amount of information required for
optimal prediction of the system's dynamics. We precisely define this
complexity for spatially-extended dynamical systems, using the probabilistic
ideas of mutual information and minimal sufficient statistics. This leads to a
general method for predicting such systems, and a simple algorithm for
estimating statistical complexity. The results of applying this algorithm to a
class of models of excitable media (cyclic cellular automata) strongly support
our proposal.Comment: Four pages, two color figure
The Quest for Understanding in Relativistic Quantum Physics
We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of
Mathematical Physics, 38 pages, typos corrected and references added, as to
appear in JM
The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing
The amidase from Geobacillus pallidus RAPc8, a moderate thermophile, is a member of the nitrilase enzyme superfamily. It converts amides to the corresponding acids and ammonia and has application as an industrial catalyst. RAPc8 amidase has been cloned and functionally expressed in Escherichia coli and has been purified by heat treatment and a number of chromatographic steps. The enzyme was crystallized using the hanging-drop vapour-diffusion method. Crystals produced in the presence of 1.2 M sodium citrate, 400 mM NaCl, 100 mM sodium acetate pH 5.6 were selected for X-ray diffraction studies. A data set having acceptable statistics to 1.96 Å resolution was collected under cryoconditions using an in-house X-ray source. The space group was determined to be primitive cubic P4232, with unit-cell parameter a = 130.49 (±0.05) Å. The structure was solved by molecular replacement using the backbone of the hypothetical protein PH0642 from Pyrococcus horikoshii (PDB code 1j31 ) with all non-identical side chains substituted with alanine as a probe. There is one subunit per asymmetric unit. The subunits are packed as trimers of dimers with D3 point-group symmetry around the threefold axis in such a way that the dimer interface seen in the homologues is preserved
Diamonds's Temperature: Unruh effect for bounded trajectories and thermal time hypothesis
We study the Unruh effect for an observer with a finite lifetime, using the
thermal time hypothesis. The thermal time hypothesis maintains that: (i) time
is the physical quantity determined by the flow defined by a state over an
observable algebra, and (ii) when this flow is proportional to a geometric flow
in spacetime, temperature is the ratio between flow parameter and proper time.
An eternal accelerated Unruh observer has access to the local algebra
associated to a Rindler wedge. The flow defined by the Minkowski vacuum of a
field theory over this algebra is proportional to a flow in spacetime and the
associated temperature is the Unruh temperature. An observer with a finite
lifetime has access to the local observable algebra associated to a finite
spacetime region called a "diamond". The flow defined by the Minkowski vacuum
of a (four dimensional, conformally invariant) quantum field theory over this
algebra is also proportional to a flow in spacetime. The associated temperature
generalizes the Unruh temperature to finite lifetime observers.
Furthermore, this temperature does not vanish even in the limit in which the
acceleration is zero. The temperature associated to an inertial observer with
lifetime T, which we denote as "diamond's temperature", is 2hbar/(pi k_b
T).This temperature is related to the fact that a finite lifetime observer does
not have access to all the degrees of freedom of the quantum field theory.Comment: One reference correcte
A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole
Thermal Wightman functions of a massless scalar field are studied within the
framework of a ``near horizon'' static background model of an extremal R-N
black hole. This model is built up by using global Carter-like coordinates over
an infinite set of Bertotti-Robinson submanifolds glued together. The
analytical extendibility beyond the horizon is imposed as constraints on
(thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It
turns out that only the Bertotti-Robinson vacuum state, i.e. , satisfies
the above requirement. Furthermore the extension of this state onto the whole
manifold is proved to coincide exactly with the vacuum state in the global
Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem
for the Minkowski space-time in terms of Wightman functions holds with
vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum
restricted to a Bertotti-Robinson region, resulting a pure state there, has
vanishing entropy despite of the presence of event horizons. Some comments on
the real extreme R-N black hole are given
The effect of acute exercise on objectively measured sleep and cognition in older adults
Background: Exercise can improve cognition in aging, however it is unclear how exercise influences cognition, and sleep may partially explain this association. The current study aimed to investigate whether objectively measured sleep mediates the effect of an acute exercise intervention on cognition in older adults. Methods: Participants were 30 cognitively unimpaired, physically active older adults (69.2 ± 4.3 years) with poor sleep (determined via self-report). After a triple baseline cognitive assessment to account for any natural fluctuation in cognitive performance, participants completed either a single bout of 20-minutes of high intensity exercise on a cycle ergometer, or a control condition, in a cross-over trial design. Cognition was measured immediately post-intervention and the following day, and sleep (total sleep time, sleep onset latency, sleep efficiency, % of rapid eye movement sleep, light sleep and deep sleep) was characterized using WatchPAT™ at baseline (5 nights) and measured for one night after both exercise and control conditions. Results: Results showed no effect of the exercise intervention on cognition immediately post-intervention, nor an effect of acute exercise on any sleep variable. There was no mediating effect of sleep on associations between exercise and cognition. However, a change from baseline to post-intervention in light sleep and deep sleep did predict change in episodic memory at the ~24 h post-intervention cognitive assessment, regardless of intervention condition. Discussion: There was no effect of acute high intensity exercise on sleep or cognition in the current study. However, results suggest that associations between sleep and cognition may exist independently of exercise in our sample. Further research is required, and such studies may aid in informing the most effective lifestyle interventions for cognitive health
- …