57 research outputs found
Cretobestiola, a replacement name for Bestiola Pulawski and Rasnitsyn, 1999 (Hymenoptera: Sphecidae)
We recently described a sphecid wasp genus Bestiola (in Rasnitsyn et al., 1999) to accommodate four species from Lower Cretaceous of Spain, eastern Russia, and Mongolia. This generic name, however, is preoccupied by Bestiola Nikolâskaya (1963), an aphelinid, as pointed to us by Mr. John K. Page (Zoological Records, York, Great Britain) and also by Signor Guido Pagliano (Torino, Italy). We therefore propose the name Cretobestiola to replace it. The name is derived from the Latin names creta (chalk), with reference to Cretaceous geological period, and bestiola (little beast).We recently described a sphecid wasp genus Bestiola (in Rasnitsyn et al., 1999) to accommodate four species from Lower Cretaceous of Spain, eastern Russia, and Mongolia. This generic name, however, is preoccupied by Bestiola Nikolâskaya (1963), an aphelinid, as pointed to us by Mr. John K. Page (Zoological Records, York, Great Britain) and also by Signor Guido Pagliano (Torino, Italy). We therefore propose the name Cretobestiola to replace it. The name is derived from the Latin names creta (chalk), with reference to Cretaceous geological period, and bestiola (little beast)
Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c
Spectra of positively charged kaons in p+C interactions at 31 GeV/c were
measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2007 with a graphite target with a
thickness of 4% of a nuclear interaction length. Interaction cross sections and
charged pion spectra were already measured using the same set of data. These
new measurements in combination with the published ones are required to improve
predictions of the neutrino flux for the T2K long baseline neutrino oscillation
experiment in Japan. In particular, the knowledge of kaon production is crucial
for precisely predicting the intrinsic electron neutrino component and the high
energy tail of the T2K beam. The results are presented as a function of
laboratory momentum in 2 intervals of the laboratory polar angle covering the
range from 20 up to 240 mrad. The kaon spectra are compared with predictions of
several hadron production models. Using the published pion results and the new
kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron
Measurements of multiplicity and transverse momentum fluctuations of charged
particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and
158 GeV/c beam momentum. Results for the scaled variance of the multiplicity
distribution and for three strongly intensive measures of multiplicity and
transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and
\$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations
are fully corrected for experimental biases. The results on multiplicity and
transverse momentum fluctuations significantly deviate from expectations for
the independent particle production. They also depend on charges of selected
hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe
the data. The scaled variance of multiplicity fluctuations is significantly
higher in inelastic p+p interactions than in central Pb+Pb collisions measured
by NA49 at the same energy per nucleon. This is in qualitative disagreement
with the predictions of the Wounded Nucleon Model. Within the statistical
framework the enhanced multiplicity fluctuations in inelastic p+p interactions
can be interpreted as due to event-by-event fluctuations of the fireball energy
and/or volume.Comment: 18 pages, 12 figure
Measurements of Cross Sections and Charged Pion Spectra in Proton-Carbon Interactions at 31 GeV/c
Interaction cross sections and charged pion spectra in p+C interactions at 31
GeV/c were measured with the large acceptance NA61/SHINE spectrometer at the
CERN SPS. These data are required to improve predictions of the neutrino flux
for the T2K long baseline neutrino oscillation experiment in Japan. A set of
data collected during the first NA61/SHINE run in 2007 with an isotropic
graphite target with a thickness of 4% of a nuclear interaction length was used
for the analysis. The measured p+C inelastic and production cross sections are
257.2 +- 1.9 +- 8.9 mb and 229.3 +- 1.9 +- 9.0 mb, respectively. Inclusive
production cross sections for negatively and positively charged pions are
presented as a function of laboratory momentum in 10 intervals of the
laboratory polar angle covering the range from 0 up to 420 mrad. The spectra
are compared with predictions of several hadron production models.Comment: updated version; as published by Phys. Rev.
Production of Î-hyperons in inelastic p+p interactions at 158 GeV/c
Inclusive production of Π-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158 GeV/c . Spectra of transverse momentum and transverse mass as well as distributions of rapidity and x F are presented. The mean multiplicity was estimated to be 0.120±0.006(stat.)±0.010(sys.). The results are compared with previous measurements and predictions of the Epos , U r qmd and Fritiof models
FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with todayâs technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
- âŠ