292 research outputs found
Electron-phonon interaction via Pekar mechanism in nanostructures
We consider an electron-acoustic phonon coupling mechanism associated with
the dependence of crystal dielectric permittivity on the strain (the so-called
Pekar mechanism) in nanostructures characterized by strong confining electric
fields. The efficiency of Pekar coupling is a function of both the absolute
value and the spatial distribution of the electric field. It is demonstrated
that this mechanism exhibits a phonon wavevector dependence similar to that of
piezoelectricity and must be taken into account for electron transport
calculations in an extended field distribution. In particular, we analyze the
role of Pekar coupling in energy relaxation in silicon inversion layers.
Comparison with the recent experimental results is provided to illustrate its
potential significance
Mesoscopic fluctuations of the ground state spin of a small metal particle
We study the statistical distribution of the ground state spin for an
ensemble of small metallic grains, using a random-matrix toy model. Using the
Hartree Fock approximation, we find that already for interaction strengths well
below the Stoner criterion there is an appreciable probability that the ground
state has a finite, nonzero spin. Possible relations to experiments are
discussed.Comment: 4 pages, RevTeX; 1 figure included with eps
Ground-state energy and spin in disordered quantum dots
We investigate the ground-state energy and spin of disordered quantum dots
using spin-density-functional theory. Fluctuations of addition energies
(Coulomb-blockade peak spacings) do not scale with average addition energy but
remain proportional to level spacing. With increasing interaction strength, the
even-odd alternation of addition energies disappears, and the probability of
non-minimal spin increases, but never exceeds 50%. Within a two-orbital model,
we show that the off-diagonal Coulomb matrix elements help stabilize a ground
state of minimal spin.Comment: 10 pages, 2 figure
Spin and e-e interactions in quantum dots: Leading order corrections to universality and temperature effects
We study the statistics of the spacing between Coulomb blockade conductance
peaks in quantum dots with large dimensionless conductance g. Our starting
point is the ``universal Hamiltonian''--valid in the g->oo limit--which
includes the charging energy, the single-electron energies (described by random
matrix theory), and the average exchange interaction. We then calculate the
magnitude of the most relevant finite g corrections, namely, the effect of
surface charge, the ``gate'' effect, and the fluctuation of the residual e-e
interaction. The resulting zero-temperature peak spacing distribution has
corrections of order Delta/sqrt(g). For typical values of the e-e interaction
(r_s ~ 1) and simple geometries, theory does indeed predict an asymmetric
distribution with a significant even/odd effect. The width of the distribution
is of order 0.3 Delta, and its dominant feature is a large peak for the odd
case, reminiscent of the delta-function in the g->oo limit. We consider finite
temperature effects next. Only after their inclusion is good agreement with the
experimental results obtained. Even relatively low temperature causes large
modifications in the peak spacing distribution: (a) its peak is dominated by
the even distribution at kT ~ 0.3 Delta (at lower T a double peak appears); (b)
it becomes more symmetric; (c) the even/odd effect is considerably weaker; (d)
the delta-function is completely washed-out; and (e) fluctuation of the
coupling to the leads becomes relevant. Experiments aimed at observing the T=0
peak spacing distribution should therefore be done at kT<0.1 Delta for typical
values of the e-e interaction.Comment: 15 pages, 4 figure
‘Get yourself some nice, neat, matching box files’: research administrators and occupational identity work
To date, qualitative research into occupational groups and cultures within academia has been relatively scarce, with an almost exclusive concentration upon teaching staff within universities and colleges. This article seeks to address this lacuna and applies the interactionist concept of ‘identity work’ in order to examine one specific group to date under-researched: graduate research administrators.
This occupational group is of sociological interest as many of its members appear to span the putative divide between ‘academic’ and ‘administrative’ occupational worlds within higher education. An exploratory, qualitative research project was undertaken, based upon interviews with
27 research administrators. The study analyses how research administrators utilise various forms of identity work to sustain credible occupational identities, often in the face of considerable challenge from their academic colleagues
Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration
Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
On the Electron-Electron Interactions in Two Dimensions
In this paper, we analyze several experiments that address the effects of
electron-electron interactions in 2D electron (hole) systems in the regime of
low carrier density. The interaction effects result in renormalization of the
effective spin susceptibility, effective mass, and g*-factor. We found a good
agreement among the data obtained for different 2D electron systems by several
experimental teams using different measuring techniques. We conclude that the
renormalization is not strongly affected by the material or sample-dependent
parameters such as the potential well width, disorder (the carrier mobility),
and the bare (band) mass. We demonstrate that the apparent disagreement between
the reported results on various 2D electron systems originates mainly from
different interpretations of similar "raw" data. Several important issues
should be taken into account in the data processing, among them the dependences
of the effective mass and spin susceptibility on the in-plane field, and the
temperature dependence of the Dingle temperature. The remaining disagreement
between the data for various 2D electron systems, on one hand, and the 2D hole
system in GaAs, on the other hand, may indicate more complex character of
electron-electron interactions in the latter system.Comment: Added refs; corrected typos. 19 pages, 7 figures. To be published in:
Chapter 19, Proceedings of the EURESCO conference "Fundamental Problems of
Mesoscopic Physics ", Granada, 200
High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland
Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
Interactions in Chaotic Nanoparticles: Fluctuations in Coulomb Blockade Peak Spacings
We use random matrix models to investigate the ground state energy of
electrons confined to a nanoparticle. Our expression for the energy includes
the charging effect, the single-particle energies, and the residual screened
interactions treated in Hartree-Fock. This model is applicable to chaotic
quantum dots or nanoparticles--in these systems the single-particle statistics
follows random matrix theory at energy scales less than the Thouless energy. We
find the distribution of Coulomb blockade peak spacings first for a large dot
in which the residual interactions can be taken constant: the spacing
fluctuations are of order the mean level separation Delta. Corrections to this
limit are studied using the small parameter 1/(kf L): both the residual
interactions and the effect of the changing confinement on the single-particle
levels produce fluctuations of order Delta/sqrt(kf L). The distributions we
find are significantly more like the experimental results than the simple
constant interaction model.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
- …