26 research outputs found

    The use of Fe-30% Ni and Fe-30% Ni-Nb alloys as model systems for studying the microstructural evolution during the hot deformation of austenite

    Full text link
    The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed

    Got Coke? Self-Limiting Poisoning Makes an Ultra Stable and Selective Sub-nano Cluster Catalyst

    No full text
    Supported sub-nano clusters hold great promise as economical and highly active catalysts. However, they tend to deactivate rapidly by poisoning and sintering, impeding their widespread use. We find that self-limiting poisoning can stabilize and promote cluster catalysis, i.e., poisoning is not always detrimental, but can sometimes be exploited. Specifically, Pt-Ge alloy clusters supported on alumina undergo slow coking (carbon deposition) under conditions of thermal dehydrogenation, yet preserve strong binding sites. For the case of Pt4Ge/alumina, theory shows a number of thermally populated isomers, one of which catalyzes carbon deposition. Because the clusters are fluxional at high temperatures, this isomer acts as a gateway, slowly converting all the clusters to Pt4GeC2. The surprising result is that Pt4GeC2 is highly catalytically active and selective against further coking, i.e., coking produces functional, stable catalytic clusters. Ge and C2 have synergistic electronic effects, leading to efficient and highly selective catalytic dehydrogenation that stops at alkenes, and improving stability. Thus, under reaction conditions, the clusters develop into a robust catalyst, suggesting an approach to practicable cluster catalysis

    Promoter-poison partnership protects platinum performance in coked cluster catalysts

    No full text
    Deactivation via coking due to a lack of selectivity is a persistent problem for the longevity of Pt-based dehydrogenation catalysts. Ge as a promoter improves the exper- imental selectivity and stability of subnano Pt clusters. The origin of this improvement is self-limiting coking, to form a Pt4GeC2 cluster which is more stable and selective than the bare Pt4Ge cluster. In this paper we compare the dehydrogenation abilities of Pt4 and Pt4C2 with and Pt4Ge and Pt4GeC2 with DFT calculations in order to explore the origin of self-limiting coking in the presence of Ge. The unique stability of Pt4GeC2 is attributed to electron donation from Ge to the C2 atoms. This prevents the coke from drawing electrons from the Pt, which is the origin of deactivation via coking. Thus, we identify an electronic mechanism for coke deactivation and then use an electronically driven doping strategy to improve catalyst longevity. This differs from the common perception of coke deactivating via steric blocking of active sites.Furthermore, Pt4C2 and Pt4GeC2 show differences in kinetic accessibility of different isomers, which brings us into a new paradigm of sub-ensembles of isomers, where the dominant active sites are determined by kinetic stability under reaction conditions, rather than Boltzmann populations
    corecore