4,162 research outputs found

    Vacuum state truncation via the quantum Zeno effect

    Full text link
    In the context of quantum state engineering we analyze the effect of observation on nonlinear optical nn-photon Fock state generation. We show that it is possible to truncate the vacuum component from an arbitrary photon number superposition without modifying its remaining parts. In the course of the full dynamical analysis of the effect of observation, it is also found that the Zeno and the anti-Zeno effects repeat periodically. We discuss the close relationship between vacuum state truncation and so-called "interaction-free" measurement.Comment: 4 pages, 2 figures, LaTeX; TeX errors fixe

    Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.Comment: 5 pages, revtex, no figure

    Orbital-selective Mass Enhancements in Multi-band Ca2−x_{2-x}Srx_{x}RuO4_{4} Systems Analyzed by the Extended Drude Model

    Full text link
    We investigated optical spectra of quasi-two-dimensional multi-band Ca2−x% _{2-x} Srx_{x}RuO4_{4} systems. The extended Drude model analysis on the ab-plane optical conductivity spectra indicates that the effective mass should be enhanced near x=0.5x=0.5. Based on the sum rule argument, we showed that the orbital-selective Mott-gap opening for the dyz/zxd_{yz/zx} bands, the widely investigated picture, could not be the origin of the mass enhancement. We exploited the multi-band effects in the extended Drude model analysis, and demonstrated that the intriguing heavy mass state near x=0.5x=0.5 should come from the renormalization of the dxyd_{xy} band.Comment: 4 figure

    Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films

    Full text link
    High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane asymmetric atomic arrangements at the substrate surface allowed us to grow epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with quite different a- and b-axes lattice constants. The YTiO3 film exhibited a clear ferromagnetic transition at 30 K with a saturation magnetization of about 0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of the substrate, which differs from the single crystal easy axis direction, i.e., [001].Comment: 14 pages, 4 figure

    Finite-size scaling theory for explosive percolation transitions

    Full text link
    The finite-size scaling (FSS) theory for continuous phase transitions has been useful in determining the critical behavior from the size dependent behaviors of thermodynamic quantities. When the phase transition is discontinuous, however, FSS approach has not been well established yet. Here, we develop a FSS theory for the explosive percolation transition arising in the Erd\H{o}s and R\'enyi model under the Achlioptas process. A scaling function is derived based on the observed fact that the derivative of the curve of the order parameter at the critical point tct_c diverges with system size in a power-law manner, which is different from the conventional one based on the divergence of the correlation length at tct_c. We show that the susceptibility is also described in the same scaling form. Numerical simulation data for different system sizes are well collapsed on the respective scaling functions.Comment: 5 pages, 5 figure

    Predictability of reset switching voltages in unipolar resistance switching

    Full text link
    In unipolar resistance switching of NiO capacitors, Joule heating in the conducting channels should cause a strong nonlinearity in the low resistance state current-voltage (I-V) curves. Due to the percolating nature of the conducting channels, the reset current IR, can be scaled to the nonlinear coefficient Bo of the I-V curves. This scaling relationship can be used to predict reset voltages, independent of NiO capacitor size; it can also be applied to TiO2 and FeOy capacitors. Using this relation, we developed an error correction scheme to provide a clear window for separating reset and set voltages in memory operations

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions ϵ\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges ϵb\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the ϵ1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain ϵ1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract ϵ1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental ϵ1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High ϵ1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    Optical Study of the Free Carrier Response of LaTiO3/SrTiO3 Superlattices

    Full text link
    We used infrared spectroscopic ellipsometry to investigate the electronic properties of LaTiO3/SrTiO3 superlattices (SLs). Our results indicated that, independent of the SL periodicity and individual layer-thickness, the SLs exhibited a Drude metallic response with sheet carrier density per interface ~3x10^14 cm^-2. This is probably due to the leakage of d-electrons at interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We observed a carrier relaxation time ~ 35 fs and mobility ~ 35 cm^2V^-1s^-1 at 10 K, and an unusual temperature dependence of carrier density that was attributed to the dielectric screening of quantum paraelectric SrTiO3.Comment: 4 pages, 4 figure
    • …
    corecore