296 research outputs found
FeCo/Graphite Nanocrystals for Multi-Modality Imaging of Experimental Vascular Inflammation
BACKGROUND: FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI. METHODS AND RESULTS: Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (nβ=β8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (pβ=β0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (nβ=β6, 270 Β΅g Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (pβ=β0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries. CONCLUSIONS: FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation
Recommended from our members
Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis
Pneumonia is a major cause of mortality worldwide and a serious problem in critical care medicine, but the immunophysiological processes that confer either protection or morbidity are not completely understood. We show that in response to lung infection, B1a B cells migrate from the pleural space to the lung parenchyma to secrete polyreactive emergency immunoglobulin M (IgM). The process requires innate response activator (IRA) B cells, a transitional B1a-derived inflammatory subset which controls IgM production via autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling. The strategic location of these cells, coupled with the capacity to produce GM-CSFβdependent IgM, ensures effective early frontline defense against bacteria invading the lungs. The study describes a previously unrecognized GM-CSF-IgM axis and positions IRA B cells as orchestrators of protective IgM immunity
Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice
BackgroundβExaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. Here, we used nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apolipoprotein Eβdeficient (apoEβ/β) mice after MI. We used dual-target positron emission tomography/magnetic resonance imaging of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subsetβtargeted RNAi altered infarct inflammation and healing.
Methods and ResultsβFlow cytometry, gene expression analysis, and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoEβ/β mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix cross-linking noninvasively, we developed a fluorine-18βlabeled positron emission tomography agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged with a molecular magnetic resonance imaging sensor of MPO activity (MPO-Gd). Positron emission tomography/magnetic resonance imaging detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal; P<0.05), whereas 18F-FXIII positron emission tomography reflected unimpeded matrix cross-linking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29% to 35% (P<0.05).
ConclusionβCCR2-targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation, and curbed post-MI left ventricular remodeling.National Heart, Lung, and Blood InstituteUnited States. Dept. of Health and Human Services (contract No. HHSN268201000044C)National Institutes of Health (U.S.) (grant R01-HL096576)National Institutes of Health (U.S.) (grant R01-HL095629)National Institutes of Health (U.S.) (grant T32-HL094301)Deutsche Forschungsgemeinschaft (HE-6382/1-1
Ligation of the Jugular Veins Does Not Result in Brain Inflammation or Demyelination in Mice
An alternative hypothesis has been proposed implicating chronic cerebrospinal venous insufficiency (CCSVI) as a potential cause of multiple sclerosis (MS). We aimed to evaluate the validity of this hypothesis in a controlled animal model. Animal experiments were approved by the institutional animal care committee. The jugular veins in SJL mice were ligated bilaterally (nβ=β20), and the mice were observed for up to six months after ligation. Sham-operated mice (nβ=β15) and mice induced with experimental autoimmune encephalomyelitis (nβ=β8) were used as negative and positive controls, respectively. The animals were evaluated using CT venography and 99mTc-exametazime to assess for structural and hemodynamic changes. Imaging was performed to evaluate for signs of blood-brain barrier (BBB) breakdown and neuroinflammation. Flow cytometry and histopathology were performed to assess inflammatory cell populations and demyelination. There were both structural changes (stenosis, collaterals) in the jugular venous drainage and hemodynamic disturbances in the brain on Tc99m-exametazime scintigraphy (pβ=β0.024). In the JVL mice, gadolinium MRI and immunofluorescence imaging for barrier molecules did not reveal evidence of BBB breakdown (pβ=β0.58). Myeloperoxidase, matrix metalloproteinase, and protease molecular imaging did not reveal signs of increased neuroinflammation (all p>0.05). Flow cytometry and histopathology also did not reveal increase in inflammatory cell infiltration or population shifts. No evidence of demyelination was found, and the mice remained without clinical signs. Despite the structural and hemodynamic changes, we did not identify changes in the BBB permeability, neuroinflammation, demyelination, or clinical signs in the JVL group compared to the sham group. Therefore, our murine model does not support CCSVI as a cause of demyelinating diseases such as multiple sclerosis
In Vivo Mapping of Vascular Inflammation Using Multimodal Imaging
Plaque vulnerability to rupture has emerged as a critical correlate to risk of adverse coronary events but there is as yet no clinical method to assess plaque stability in vivo. In the search to identify biomarkers of vulnerable plaques an association has been found between macrophages and plaque stability--the density and pattern of macrophage localization in lesions is indicative of probability to rupture. In very unstable plaques, macrophages are found in high densities and concentrated in the plaque shoulders. Therefore, the ability to map macrophages in plaques could allow noninvasive assessment of plaque stability. We use a multimodality imaging approach to noninvasively map the distribution of macrophages in vivo. The use of multiple modalities allows us to combine the complementary strengths of each modality to better visualize features of interest. Our combined use of Positron Emission Tomography and Magnetic Resonance Imaging (PET/MRI) allows high sensitivity PET screening to identify putative lesions in a whole body view, and high resolution MRI for detailed mapping of biomarker expression in the lesions.Macromolecular and nanoparticle contrast agents targeted to macrophages were developed and tested in three different mouse and rat models of atherosclerosis in which inflamed vascular plaques form spontaneously and/or are induced by injury. For multimodal detection, the probes were designed to contain gadolinium (T1 MRI) or iron oxide (T2 MRI), and Cu-64 (PET). PET imaging was utilized to identify regions of macrophage accumulation; these regions were further probed by MRI to visualize macrophage distribution at high resolution. In both PET and MR images the probes enhanced contrast at sites of vascular inflammation, but not in normal vessel walls. MRI was able to identify discrete sites of inflammation that were blurred together at the low resolution of PET. Macrophage content in the lesions was confirmed by histology.The multimodal imaging approach allowed high-sensitivity and high-resolution mapping of biomarker distribution and may lead to a clinical method to predict plaque probability to rupture
Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis
Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base
PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis
PURPOSE OF REVIEW: With this review, we aim to summarize the role of positron emission tomography (PET) and near-infrared fluorescence imaging (NIRF) in the detection of atherosclerosis. RECENT FINDINGS: (18)F-FDG is an established measure of increased macrophage activity. However, due to its low specificity, new radiotracers have emerged for more specific detection of vascular inflammation and other high-risk plaque features such as microcalcification and neovascularization. Novel NIRF probes are engineered to sense endothelial damage as an early sign of plaque erosion as well as oxidized low-density lipoprotein (oxLDL) as a prime target for atherosclerosis. Integrated NIRF/OCT (optical coherence tomography) catheters enable to detect stent-associated microthrombi. Novel radiotracers can improve specificity of PET for imaging atherosclerosis. Advanced NIRF probes show promise for future application in human. Intravascular NIRF might play a prominent role in the detection of stent-induced vascular injury
Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue
Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection
Leukocyte- and Platelet-Derived Microvesicle Interactions following In Vitro and In Vivo Activation of Toll-Like Receptor 4 by Lipopolysaccharide
BACKGROUND: Pro-coagulant membrane microvesicles (MV) derived from platelets and leukocytes are shed into the circulation following receptor-mediated activation, cell-cell interaction, and apoptosis. Platelets are sentinel markers of toll-like receptor 4 (TLR4) activation. Experiments were designed to evaluate the time course and mechanism of direct interactions between platelets and leukocytes following acute activation of TLR4 by bacterial lipopolysaccharide (LPS). METHODOLOGY/PRINCIPAL FINDINGS: Blood from age-matched male and female wild type (WT) and TLR4 gene deleted (dTLR4) mice was incubated with ultra-pure E. coli LPS (500 ng/ml) for up to one hour. At designated periods, leukocyte antigen positive platelets, platelet antigen positive leukocytes and cell-derived MV were quantified by flow cytometry. Numbers of platelet- or leukocyte-derived MV did not increase within one hour following in vitro exposure of blood to LPS. However, with LPS stimulation numbers of platelets staining positive for both platelet- and leukocyte-specific antigens increased in blood derived from WT but not dTLR4 mice. This effect was blocked by inhibition of TLR4 signaling mediated by My88 and TRIF. Seven days after a single intravenous injection of LPS (500 ng/mouse or 20 ng/gm body wt) to WT mice, none of the platelets stained for leukocyte antigen. However, granulocytes, monocytes and apoptotic bodies stained positive for platelet antigens. CONCLUSIONS/SIGNIFICANCE: Within one hour of exposure to LPS, leukocytes exchange surface antigens with platelets through TLR4 activation. In vivo, leukocyte expression of platelet antigen is retained after a single exposure to LPS following turn over of the platelet pool. Acute expression of leukocyte antigen on platelets within one hour of exposure to LPS and the sustained expression of platelet antigen on leukocytes following a single acute exposure to LPS in vivo explains, in part, associations of platelets and leukocytes in response to bacterial infection and changes in thrombotic propensity of the blood
- β¦