6,897 research outputs found

    The Effect of Shear Flow on the Helfrich Interaction in Lyotropic Lamellar Systems

    Full text link
    We study the effect of shear flow on the entropic Helfrich interaction in lyotropic surfactant smectic fluids. Arguing that flow induces an effective anisotropic surface tension in bilayers due to a combination of intermonolayer friction, bilayer collisions and convection, we calculate the reduction in fluctuations and hence the renormalised change in effective compression modulus and steady-state layer spacing. We demonstrate that non-permeable or slowly permeating membranes can be susceptible to a undulatory instability of the Helfrich-Hurault type, and speculate that such an instability could be one source of a transition to multilamellar vesicles.Comment: 14 pages, to appear in Eur Phys J

    New Hope for Corrections: The Creation of a National Institute

    Get PDF

    NICMOS and VLBA observations of the gravitational lens system B1933+503

    Get PDF
    NICMOS observations of the complex gravitational lens system B1933+503 reveal infrared counterparts to two of the inverted spectrum radio images. The infrared images have arc-like structures. The corresponding radio images are also detected in a VLBA map made at 1.7 GHz with a resolution of 6 mas. We fail to detect two of the four inverted radio spectrum components with the VLBA even though they are clearly visible in a MERLIN map at the same frequency at a different epoch. The absence of these two components could be due to rapid variability on a time-scale less than the time delay, or to broadening of the images during propagation of the radio waves through the ISM of the lensing galaxy to an extent that they fall below the surface brightness detectability threshold of the VLBA observations. The failure to detect the same two images with NICMOS is probably due to extinction in the ISM of the lensing galaxy.Comment: 5 pages, 4 figures, submitted to MNRA

    Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    Get PDF
    We present constraints on the cosmological constant λ0\lambda_{0} from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical surveys. This is due to the fact that the median source redshifts of JVAS are lower, which leads to both relatively fewer lenses in the survey and a weaker dependence on the cosmological parameters. Although more approximations have to be made than is the case for optical surveys, the consistency of the results with those from optical gravitational lens surveys and other cosmological tests indicate that this is not a major source of uncertainty in the results. However, joint constraints from a combination of radio and optical data are much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky Survey should provide even tighter constraints on the cosmological constant, especially when combined with data from optical lens surveys. At 95% confidence, our lower and upper limits on λ0−Ω0\lambda_{0}-\Omega_{0}, using the JVAS lensing statistics information alone, are respectively -2.69 and 0.68. For a flat universe, these correspond to lower and upper limits on \lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS lensing statistics and lensing statistics from the literature as discussed in Quast & Helbig (Paper I) the corresponding λ0−Ω0\lambda_{0}-\Omega_{0} values are -1.78 and 0.27. For a flat universe, these correspond to lower and upper limits on λ0\lambda_{0} of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version available on request. Data available from http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm

    Lensing galaxies: light or dark?

    Get PDF
    In a recent paper, Hawkins (1997) argues on the basis of statistical studies of double-image gravitational lenses and lens candidates that a large population of dark lenses exists and that these outnumber galaxies with more normal mass-to-light ratios by a factor of 3:1. If correct, this is a very important result for many areas of astronomy including galaxy formation and cosmology. In this paper we discuss our new radio-selected gravitational lens sample, JVAS/CLASS, in order to test and constrain this proposition. We have obtained ground-based and HST images of all multiple-image lens systems in our sample and in 12 cases out of 12 we find the lensing galaxies in the optical and/or near infrared. Our success in finding lensing galaxies creates problems for the dark lens hypothesis. If it is to survive, ad hoc modifications seem to be necessary: only very massive galaxies (more than about one trillion solar masses) can be dark, and the cutoff in mass must be sharp. Our finding of lens galaxies in all the JVAS/CLASS systems is complementary evidence which supports the conclusion of Kochanek et al. (1997) that many of the wide-separation optically-selected pairs are physically distinct quasars rather than gravitational lens systems.Comment: 4 pages, 2 included figures, accepted for publication in Astronomy and Astrophysics. Paper version available on request. This replacement amends the text to allow more discussion of the overlap with astro-ph/971016
    • …
    corecore