2,291 research outputs found
Effects of different geometries on the conductance, shot noise and tunnel magnetoresistance of double quantum dots
The spin-polarized transport through a coherent strongly coupled double
quantum dot (DQD) system is analyzed theoretically in the sequential and
cotunneling regimes. Using the real-time diagrammatic technique, we analyze the
current, differential conductance, shot noise and tunnel magnetoresistance
(TMR) as a function of both the bias and gate voltages for double quantum dots
coupled in series, in parallel as well as for T-shaped systems. For DQDs
coupled in series, we find a strong dependence of the TMR on the number of
electrons occupying the double dot, and super-Poissonian shot noise in the
Coulomb blockade regime. In addition, for asymmetric DQDs, we analyze transport
in the Pauli spin blockade regime and explain the existence of the leakage
current in terms of cotunneling and spin-flip cotunneling-assisted sequential
tunneling. For DQDs coupled in parallel, we show that the transport
characteristics in the weak coupling regime are qualitatively similar to those
of DQDs coupled in series. On the other hand, in the case of T-shaped quantum
dots we predict a large super-Poissonian shot noise and TMR enhanced above the
Julliere value due to increased occupation of the decoupled quantum dot. We
also discuss the possibility of determining the geometry of the double dot from
transport characteristics. Furthermore, where possible, we compare our results
with existing experimental data on nonmagnetic systems and find qualitative
agreement.Comment: 15 pages, 12 figures, accepted in Phys. Rev.
Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems
Temperature dependence of thermopower in the multiorbital Hubbard model is
studied by using the dynamical mean-field theory with the non-crossing
approximation impurity solver. It is found that the Coulomb interaction, the
Hund coupling, and the crystal filed splitting bring about non-monotonic
temperature dependence of the thermopower, including its sign reversal. The
implication of our theoretical results to some materials is discussed.Comment: 3 pages, 3 figure
Spin-polarized transport through weakly coupled double quantum dots in the Coulomb-blockade regime
We analyze cotunneling transport through two quantum dots in series weakly
coupled to external ferromagnetic leads. In the Coulomb blockade regime the
electric current flows due to third-order tunneling, while the second-order
single-barrier processes have indirect impact on the current by changing the
occupation probabilities of the double dot system. We predict a zero-bias
maximum in the differential conductance, whose magnitude is conditioned by the
value of the inter-dot Coulomb interaction. This maximum is present in both
magnetic configurations of the system and results from asymmetry in cotunneling
through different virtual states. Furthermore, we show that tunnel
magnetoresistance exhibits a distinctively different behavior depending on
temperature, being rather independent of the value of inter-dot correlation.
Moreover, we find negative TMR in some range of the bias voltage.Comment: 9 pages, 7 figures, accepted in Phys. Rev.
Anomalous enhancement of spin Hall conductivity in superconductor/normal metal junction
We propose a spin Hall device to induce a large spin Hall effect in a
superconductor/normal metal (SN) junction. The side jump and skew scattering
mechanisms are both taken into account to calculate the extrinsic spin Hall
conductivity in the normal metal. We find that both contributions are
anomalously enhanced when the voltage between the superconductor and the normal
metal approaches to the superconducting gap. This enhancement is attributed to
the resonant increase of the density of states in the normal metal at the Fermi
level. Our results demonstrate a novel way to control and amplify the spin Hall
conductivity by applying an external dc electric field, suggesting that a SN
junction has a potential application for a spintronic device with a large spin
Hall effect.Comment: 5 pages, 4 figures, To be published as a Rapid Communication in
Physical Review
Low energy electronic states and triplet pairing in layered cobaltates
The structure of the low-energy electronic states in layered cobaltates is
considered starting from the Mott insulating limit. We argue that the coherent
part of the wave-functions and the Fermi-surface topology at low doping are
strongly influenced by spin-orbit coupling of the correlated electrons on the
level. An effective t-J model based on mixed spin-orbital states is
radically different from that for the cuprates, and supports unconventional,
pseudospin-triplet pairing.Comment: 4 pages, 3 figure
Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates
We propose a mechanism for high critical temperature (T_c) in the coexistent
phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in
multilayered cuprates. The Josephson coupling between the SC planes separated
by an AF insulator (Mott insulator) is calculated perturbatively up to the
fourth order in terms of the hopping integral between adjacent CuO_2 planes. It
is shown that the AF exchange splitting in the AF plane suppresses the
so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads
to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure
Charge pumping and the colored thermal voltage noise in spin valves
Spin pumping by a moving magnetization gives rise to an electric voltage over
a spin valve. Thermal fluctuations of the magnetization manifest themselves as
increased thermal voltage noise with absorption lines at the ferromagnetic
resonance frequency and/or zero frequency. The effect depends on the
magnetization configuration and can be of the same order of magnitude as the
Johnson-Nyquist thermal noise. Measuring colored voltage noise is an
alternative to ferromagnetic resonance experiments for nano-scale ferromagnetic
circuits.Comment: 9 pages, 2 figure
- …