40,179 research outputs found

    Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States

    Full text link
    We report on the cascade of quantum phase transitions exhibited by tunnel-coupled edge states across a quantum Hall line junction. We identify a series of quantum critical points between successive strong and weak tunneling regimes in the zero-bias conductance. Scaling analysis shows that the conductance near the critical magnetic fields BcB_{c} is a function of a single scaling argument BBcTκ|B-B_{c}|T^{-\kappa}, where the exponent κ=0.42\kappa = 0.42. This puzzling resemblance to a quantum Hall-insulator transition points to importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Zero-Bias Anomalies in Narrow Tunnel Junctions in the Quantum Hall Regime

    Full text link
    We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1\nu > 1 and a strongly suppressed conductance for ν<1\nu < 1. A transition between the two behaviors is found near ν1\nu \approx 1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1\nu < 1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0n = 0 Landau levels. The ZBA for ν>1\nu > 1 arises from weak tunneling of quasiparticles between the n=1n = 1 edge channels.Comment: version with edits for clarit

    Kondo Effect and Josephson Current through a Quantum Dot between Two Superconductors

    Full text link
    We investigate the supercurrent through a quantum dot for the whole range of couplings using the numerical renormalization group method. We find that the Josephson current switches abruptly from a π\pi- to a 0-phase as the coupling increases. At intermediate couplings the total spin in the ground state depends on the phase difference between the two superconductors. Our numerical results can explain the crossover in the conductance observed experimentally by Buitelaar \textit{et al.} [Phys. Rev. Lett. \textbf{89}, 256 801 (2002)].Comment: Fig.2 and corresponding text have been changed; Several other small change

    Quantum Hall Ferromagnetism in a Two-Dimensional Electron System

    Full text link
    Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction ν=1/3\nu = 1/3) and spin-unpolarized (ν=2/5\nu = 2/5) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.Comment: 15 pages, 5 figure

    Separable states and the geometric phases of an interacting two-spin system

    Full text link
    It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then always equal to the sum of the geometric phases of its subsystems. In this paper, we illustrate this point by investigating a well known physical model. We give a necessary and sufficient condition in which a separable state remains separable so that the geometric phase of the system is always equal to the sum of the geometric phases of its subsystems.Comment: 13 page

    Voltage-Controlled Surface Magnetization of Itinerant Ferromagnet Ni_(1-x)Cu_x

    Full text link
    We argue that surface magnetization of a metallic ferromagnet can be turned on and off isothermally by an applied voltage. For this, the material's electron subsystem must be close enough to the boundary between para- and ferromagnetic regions on the electron density scale. For the 3d series, the boundary is between Ni and Cu, which makes their alloy a primary candidate. Using Ginzburg-Landau functional, which we build from Ni_(1-x)Cu_x empirical properties, ab-initio parameters of Ni and Cu, and orbital-free LSDA, we show that the proposed effect is experimentally observable.Comment: 4 pages; 2 figures; submitted to PRL February 16th 2008; transferred to PRB June 21st 2008; published July 15th 200
    corecore