26 research outputs found
Measuring pedestrian level of stress in urban environments: Naturalistic walking pilot study
Walking is the most basic and sustainable mode of transportation, and many jurisdictions would like to see increased walking rates as a way of reducing congestion and emission levels and improving public health. In the United States, walking trips account for 10.5% of all trips undertaken. To increase this rate, additional research on what makes people feel more comfortable while walking is needed. Research on pedestrian quality of service (QOS) has sought to quantify the performance of the pedestrian facilities from a pedestrian’s perspective. However, the impact of pedestrian safety countermeasures on pedestrian QOS for roadway crossings is largely unknown. The objective of this study is to discern pedestrian QOS based on physiological measurements of pedestrians performing normal walking activities in different traffic contexts. The naturalistic walking study described in this paper recruited 15 pedestrians and asked each to wear an instrumented wristband and GPS recorder on all walking trips for one week. Surprisingly, the findings from the study showed no correlation between participants’ stress levels and individual crossing locations. Instead, stress was associated with roadway conditions. Higher levels of stress were generally associated with walking in proximity to collector and arterial streets and in areas with industrial and mixed (e.g., offices, retail, residential) land uses. Stress levels were tempered in lower-density residential land uses, as well as in forest, park, and university campus environments. The outcomes from this study can inform how planners design urban environments that reduce pedestrian stress levels to promote walkability
Integrating complex systems science into road safety research and practice, Part 2: Applying systems tools to the problem of increasing pedestrian death rates
Objectives To provide a specific example of how systems dynamics tools can increase understanding of stakeholder mental models' and generate robust systems-based hypotheses about the escalating problem of rising pedestrian death rates in the USA. Methods We designed and facilitated two group model building (GMB) workshops. Participants generated causal loop diagrams (CLDs) individually and in small groups to explore hypotheses concerning time-dynamic interacting factors underlying the increasing rates of pedestrian deaths. Using a grounded theory approach, research team members synthesised the structures and hypotheses into a single CLD. Results CLDs from the 41 participants indicated four core factors hypothesised to have a direct impact on pedestrian fatalities: pedestrian-vehicle crashes, vehicle speed at the time of the crash, vehicle size/dimensions and emergency response time. Participants diagrammed how actions and reactions impacted these proximal factors over time and led to ripple effects throughout a larger system to generate an increase in pedestrian deaths. Hypothesised contributing mechanisms fell within the following broad categories: community responses; research, policy and industry influence; potential unintended consequences of responses to pedestrian deaths; and the role of sprawl. Conclusions This application of systems science tools suggested several strategies for advancing injury prevention research and practice. The project generated robust hypotheses and advanced stakeholder communication and depth of understanding and engagement in this key issue. The CLD and GMB process detailed in this study provides a concrete example of how systems tools can be adopted and applied to a transportation safety topic
Establishment of a clinically correlated human pericardial fluid bank: Evaluation of intrapericardial diagnostic potential
The development of a clinically correlated human pericardial fluid bank and database is described. A unique feature of this registry is the availability of a large number of pericardial fluid samples for testing with respect to multiple factors and for correlation with angiographic findings and clinical syndromes expressed by the patients. The collection of data at the present time comprises frozen pericardial fluid samples obtained from patients who have undergone cardiac surgery; and historical, clinical, and laboratory data obtained from the patient records. Nearly 400 samples have been stored and analyzed thus far, with sample entry continuing. This registry is designed to evaluate the local factors that play a role in mediating or reflecting myocardial or coronary responses. Pathophysiologic processes of particular interest include restenosis, plaque ruptures, and angiogenesis. Study of the pericardial fluid bank should lead to enhanced understanding of molecular mechanisms, as well as to the explanation for the reasons underlying interpatient variability in these processes. It is further anticipated that this information might provide a foundation for the diagnostic use of pericardial fluid to individualize therapies targeting angiogenesis or plaque physiology
Establishment of a clinically correlated human pericardial fluid bank: Evaluation of intrapericardial diagnostic potential
The development of a clinically correlated human pericardial fluid bank and database is described. A unique feature of this registry is the availability of a large number of pericardial fluid samples for testing with respect to multiple factors and for correlation with angiographic findings and clinical syndromes expressed by the patients. The collection of data at the present time comprises frozen pericardial fluid samples obtained from patients who have undergone cardiac surgery; and historical, clinical, and laboratory data obtained from the patient records. Nearly 400 samples have been stored and analyzed thus far, with sample entry continuing. This registry is designed to evaluate the local factors that play a role in mediating or reflecting myocardial or coronary responses. Pathophysiologic processes of particular interest include restenosis, plaque ruptures, and angiogenesis. Study of the pericardial fluid bank should lead to enhanced understanding of molecular mechanisms, as well as to the explanation for the reasons underlying interpatient variability in these processes. It is further anticipated that this information might provide a foundation for the diagnostic use of pericardial fluid to individualize therapies targeting angiogenesis or plaque physiology
Size-Dependent Filtration Efficiency of Alternative Facemask Filter Materials
The use of facemasks is proven to mitigate the spread of the coronavirus and other biological agents that cause disease. Various forms of facemasks, made using different materials, are being used extensively, and it is important to determine their performance characteristics. The size-dependent filtration efficiency and breathing resistance of household sterilization wrap fabrics, and isolation media (American Society for Testing and Materials (ASTM)- and non-ASTM-rated), were measured in filter-holder- and mannequin-in-chamber-based systems, focusing on particles sizes between 20 nm and 2 μm. Double-layer MERV-14 (Minimum Efficiency Reporting Values with rating 14) showed the highest filtration efficiency (94.9–73.3%) amongst household filter media, whereas ASTM-rated isolation masks showed the highest filtration efficiencies (95.6–88.7) amongst all the masks considered. Filtration efficiency of 3D-printed masks with replaceable filter media was found to depend on the degree of sealing around the media holder, which depended on the material’s compressibility. Filtration efficiencies of triple-layer combinations (95.8–85.3%) follow a profile similar to single layers but with improved filtration efficiencies