3,283 research outputs found
Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion
This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V
Early last glacial maximum in the southern Central Andes reveals northward shift of the westerlies at ~39 ka
The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24â18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO<sub>2</sub> concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO<sub>2</sub>, and it highlights our limited understanding of the forcings of atmospheric circulation
Origin and age of submarine ferromanganese hardgrounds from the Marion Plateau, offshore northeast Australia
Be and Nd isotope compositions and metal concentrations (Mn, Fe, Co, Ni, and Cu) of surface and subsurface ferromanganese hardground crusts from Ocean Drilling Program Leg 194 Marion Plateau Sites 1194 and 1196 provide new insights into the crusts' genesis, growth rates, and ages. Metal compositions indicate that the hardgrounds, which have grown on erosional surfaces in water depths of <400 m because of strong bottom currents, are not pure hydrogenetic precipitates. Nevertheless, the ratios between cosmogenic 10Be and stable 9Be in hardgrounds from the present-day seafloor at Site 1196 between 1 x 10â7 and 1.5 x 10â7 are within the range of values expected for Pacific seawater, which shows that the hardgrounds recorded the isotope composition of ambient seawater. This is also confirmed by their Nd isotope composition (Nd between â3 and 0). The 10Be/9Be ratios in the up to 30-mm-thick and partly laminated hardgrounds do not show a decrease with depth, which suggests high growth rates on the present-day seafloor. The subsurface crust at Site 1194 (117 m below the seafloor) grew during a sedimentation hiatus, when bottom currents in the late Miocene prevented sediment accumulation on the carbonate platform during a sea level lowstand. The age of 8.65 ± 0.50 Ma for this crust obtained from 10Be-based dating agrees well with the combined seismostratigraphic and biostratigraphic evidence, which suggests an age for the hiatus between 7.7 and 11.8 Ma
Performance data of US Naval Observatory VLG-11 hydrogen masers since September, 1983
In 1983, two VLC-11 masers were delivered to the U.S. Naval Observatory by the Smithsonian Astrophysical Observatory. Last year the short-term stability of these masers was reported and the effect of this short-term stability on timekeeping performance was examined. Since the date of installation, 13 September 1983, data on the masers' long-term performance have been accumulated. The Allan variance, agma(tau), of the relative frequency between the masers reaches a minimum of about 4 parts in 10 to the 16th power at averaging times 5,000 seconds and rises at longer averaging times due, at least partly, to systematic frequency drift. The systematic frequency drifts, expressed in units of fractional frequency difference per day are discussed
The evolution of deep water mixing and weathering inputs in the central Atlantic Ocean over the past 33 Myr
The isotopic composition of Nd in present-day deep waters of the central and northeastern Atlantic Ocean is
thought to fingerprint mixing of North Atlantic Deep Water with Antarctic Bottom Water. The central Atlantic
Romanche and Vema Fracture Zones are considered the most important pathways for deep water exchange
between the western and eastern Atlantic basins today. We present new Nd isotope records of the deepwater
evolution in the fracture zones obtained from ferromanganese crusts, which are inconsistent with simple water
mass mixing alone prior to 3 Ma and require additional inputs from other sources. The new Pb isotope time
series from the fracture zones are inexplicable by simple mixing of North Atlantic Deep Water and Antarctic
Bottom Water for the entire past 33 Myr. The distinct and relatively invariable Nd and Pb isotope records of
deep waters in the fracture zones appear instead to have been controlled to a large extent by contributions from
Saharan dust and the Orinoco/Amazon Rivers. Thus the previously observed similarity of Nd and Pb isotope
time series from the western and eastern North Atlantic basins is better explainable by direct supply of Labrador
Seawater to the eastern basin via a northern pathway rather than by advection of North Atlantic Deep Water via
the Romanche and Vema Fracture Zones
Operationalizing anthropological theory: four techniques to simplify networks of co-occurring ethnographic codes
The use of data and algorithms in the social sciences allows for exciting progress, but also poses epistemological challenges. Operations that appear innocent and purely technical may profoundly influence final results. Researchers working with data can make their process less arbitrary and more accountable by making theoretically grounded methodological choices. We apply this approach to the problem of simplifying networks representing ethnographic corpora, in the interest of visual interpretation. Network nodes represent ethnographic codes, and their edges the co-occurrence of codes in a corpus. We introduce and discuss four techniques to simplify such networks and facilitate visual analysis. We show how the mathematical characteristics of each one are aligned with an identifiable approach in sociology or anthropology: structuralism and post-structuralism; identifying the central concepts in a discourse; and discovering hegemonic and counter-hegemonic clusters of meaning. We then provide an example of how the four techniques complement each other in ethnographic analysis
- âŠ