501 research outputs found

    Cavity Nonlinear Optics at Low Photon Numbers from Collective Atomic Motion

    Full text link
    We report on Kerr nonlinearity and dispersive optical bistability of a Fabry-Perot optical resonator due to the displacement of ultracold atoms trapped within. In the driven resonator, such collective motion is induced by optical forces acting upon up to 10510^5 87^{87}Rb atoms prepared in the lowest band of a one-dimensional intracavity optical lattice. The longevity of atomic motional coherence allows for strongly nonlinear optics at extremely low cavity photon numbers, as demonstrated by the observation of both branches of optical bistability at photon numbers below unity.Comment: 4 pages, 3 figures. Modifed following reviewer comment

    Observing Parity Time Symmetry Breaking in a Josephson Parametric Amplifier

    Full text link
    A coupled two-mode system with balanced gain and loss is a paradigmatic example of an open quantum system that can exhibit real spectra despite being described by a non-Hermitian Hamiltonian. We utilize a degenerate parametric amplifier operating in three-wave mixing mode to realize such a system of balanced gain and loss between the two quadrature modes of the amplifier. By examining the time-domain response of the amplifier, we observe a characteristic transition from real-to-imaginary energy eigenvalues associated with the Parity-Time-symmetry-breaking transition.Comment: 6 pages, 4 figure

    Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    Full text link
    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed alkali metal dispenser in < 10^-10 torr ultra-high vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing "shroud" held at < 0 C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background alkali atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly-switched, two-temperature thermal beam, and was used to load a MOT with 3 x 10^8 atoms.Comment: 5 pages, 4 figure

    Efficiently Fuelling a Quantum Engine with Incompatible Measurements

    Full text link
    We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the non-commuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.Comment: 13 pages, 5 figure

    Speeding up entanglement generation by proximity to higher-order exceptional points

    Full text link
    Entanglement is a key resource for quantum information technologies ranging from quantum sensing to quantum computing. Conventionally, the entanglement between two coupled qubits is established at the time scale of the inverse of the coupling strength. In this work, we study two weakly coupled non-Hermitian qubits and observe entanglement generation at a significantly shorter time scale by proximity to a higher-order exceptional point. We establish a non-Hermitian perturbation theory based on constructing a biorthogonal complete basis and further identify the optimal condition to obtain the maximally entangled state. Our study of speeding up entanglement generation in non-Hermitian quantum systems opens new avenues for harnessing coherent nonunitary dissipation for quantum technologies.Comment: 6+18 pages, 4+12 figures. Zeng-Zhao Li and Weijian Chen contributed equally to this wor
    • …
    corecore