17 research outputs found
Long-Term Programming of CD8 T Cell Immunity by Perinatal Exposure to Glucocorticoids
Early life environmental exposure, particularly during perinatal period, can have a life-long impact on organismal development and physiology. The biological rationale for this phenomenon is to promote physiological adaptations to the anticipated environment based on early life experience. However, perinatal exposure to adverse environments can also be associated with adult-onset disorders. Multiple environmental stressors induce glucocorticoids, which prompted us to investigate their role in developmental programming. Here, we report that perinatal glucocorticoid exposure had long-term consequences and resulted in diminished CD8 T cell response in adulthood and impaired control of tumor growth and bacterial infection. We found that perinatal glucocorticoid exposure resulted in persistent alteration of the hypothalamic-pituitary-adrenal (HPA) axis. Consequently, the level of the hormone in adults was significantly reduced, resulting in decreased CD8 T cell function. Our study thus demonstrates that perinatal stress can have long-term consequences on CD8 T cell immunity by altering HPA axis activity.Y
Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway
Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential
A screening approach to identify clinically actionable variants causing congenital heart disease in exome data
BACKGROUND: Congenital heart disease (CHD)-structural abnormalities of the heart that arise during embryonic development-is the most common inborn malformation, affecting ≤1% of the population. However, currently, only a minority of cases can be explained by genetic abnormalities. The goal of this study was to identify disease-causal genetic variants in 30 families affected by CHD. METHODS: Whole-exome sequencing was performed with the DNA of multiple family members. We utilized a 2-tiered whole-exome variant screening and interpretation procedure. First, we manually curated a high-confidence list of 90 genes known to cause CHD in humans, identified predicted damaging variants in genes on this list, and rated their pathogenicity using American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. RESULTS: In 3 families (10%), we found pathogenic variants in known CHD genes TBX5, TFAP2B, and PTPN11, explaining the cardiac lesions. Second, exomes were comprehensively analyzed to identify additional predicted damaging variants that segregate with disease in CHD candidate genes. In 10 additional families (33%), likely disease-causal variants were uncovered in PBX1, CNOT1, ZFP36L2, TEK, USP34, UPF2, KDM5A, KMT2C, TIE1, TEAD2, and FLT4. CONCLUSIONS: The pathogenesis of CHD could be explained using our high-confidence CHD gene list for variant filtering in a subset of cases. Furthermore, our unbiased screening procedure of family exomes implicates additional genes and variants in the pathogenesis of CHD, which suggest themselves for functional validation. This 2-tiered approach provides a means of (1) identifying clinically actionable variants and (2) identifying additional disease-causal genes, both of which are essential for improving the molecular diagnosis of CHD