221 research outputs found
Terpene synthase genes originated from bacteria through horizontal gene transfer contribute to terpenoid diversity in fungi
Fungi are successful eukaryotes of wide distribution. They are known as rich producers of secondary metabolites, especially terpenoids, which are important for fungi-environment interactions. Horizontal gene transfer (HGT) is an important mechanism contributing to genetic innovation of fungi. However, it remains unclear whether HGT has played a role in creating the enormous chemical diversity of fungal terpenoids. Here we report that fungi have acquired terpene synthase genes (TPSs), which encode pivotal enzymes for terpenoid biosynthesis, from bacteria through HGT. Phylogenetic analysis placed the majority of fungal and bacterial TPS genes from diverse taxa into two clades, indicating ancient divergence. Nested in the bacterial TPS clade is a number of fungal TPS genes that are inferred as the outcome of HGT. These include a monophyletic clade of nine fungal TPS genes, designated as BTPSL for bacterial TPS-like genes, from eight species of related entomopathogenic fungi, including seven TPSs from six species in the genus Metarhizium. In vitro enzyme assays demonstrate that all seven BTPSL genes from the genus Metarhizium encode active enzymes with sesquiterpene synthase activities of two general product profiles. By analyzing the catalytic activity of two resurrected ancestral BTPSLs and one closely related bacterial TPS, the trajectory of functional evolution of BTPSLs after HGT from bacteria to fungi and functional divergence within Metarhizium could be traced. Using M. brunneum as a model species, both BTPSLs and typical fungal TPSs were demonstrated to be involved in the in vivo production of terpenoids, illustrating the general importance of HGT of TPS genes from bacteria as a mechanism contributing to terpenoid diversity in fungi
Laser-In-Situ Monitoring of Combustion Processes
Several examples of laser in situ monitoring of combustion processes are presented. Using a frequency modulated 13CO2 waveguide laser, in situ concentrations of NH3 down to 1 ppm were measured at temperatures up to 600°C in waste incinerators and power or chemical plants. Following ignition of CH3OH-O2 mixtures by a TEA CO2 laser, gas temperature profiles were measured using rapid scanning tunable diode laser spectroscopy of CO molecules. In laminar CH4-air counterflow diffusion flames at atmospheric pressure absolute concentrations, temperatures, and collisional lifetimes of OH radicals were determined by 2-D and picosecond LIF and absorption spectroscopy. Two-dimensional LIF and Mie scattering were used to observe fuel injection and combustion in a diesel engine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86767/1/Sick52.pd
Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements
Abstract. The springtime composition of the Arctic lower troposphere is to a large extent controlled by the transport of midlatitude air masses into the Arctic. In contrast, pre- cipitation and natural sources play the most important role during summer. Within the Arctic region sloping isentropes create a barrier to horizontal transport, known as the polar dome. The polar dome varies in space and time and exhibits a strong influence on the transport of air masses from mid- latitudes, enhancing transport during winter and inhibiting transport during summer.
We analyzed aircraft-based trace gas measurements in the Arctic from two NETCARE airborne field campaigns (July 2014 and April 2015) with the Alfred Wegener Insti- tute Polar 6 aircraft, covering an area from Spitsbergen to Alaska (134 to 17◦ W and 68 to 83◦ N). Using these data we characterized the transport regimes of midlatitude air masses traveling to the high Arctic based on CO and CO2 mea- surements as well as kinematic 10 d back trajectories. We found that dynamical isolation of the high Arctic lower tro- posphere leads to gradients of chemical tracers reflecting dif- ferent local chemical lifetimes, sources, and sinks. In par- ticular, gradients of CO and CO2 allowed for a trace-gas- based definition of the polar dome boundary for the two mea- surement periods, which showed pronounced seasonal differences. Rather than a sharp boundary, we derived a transi- tion zone from both campaigns. In July 2014 the polar dome boundary was at 73.5◦ N latitude and 299–303.5 K potential temperature. During April 2015 the polar dome boundary was on average located at 66–68.5◦ N and 283.5–287.5 K. Tracer–tracer scatter plots confirm different air mass prop- erties inside and outside the polar dome in both spring and summer.
Further, we explored the processes controlling the recent transport history of air masses within and outside the polar dome. Air masses within the springtime polar dome mainly experienced diabatic cooling while traveling over cold sur- faces. In contrast, air masses in the summertime polar dome were diabatically heated due to insolation. During both sea- sons air masses outside the polar dome slowly descended into the Arctic lower troposphere from above through ra- diative cooling. Ascent to the middle and upper troposphere mainly took place outside the Arctic, followed by a north- ward motion. Air masses inside and outside the polar dome were also distinguished by different chemical compositions of both trace gases and aerosol particles. We found that the fraction of amine-containing particles, originating from Arc- tic marine biogenic sources, is enhanced inside the polar dome. In contrast, concentrations of refractory black carbon
are highest outside the polar dome, indicating remote pollu- tion sources.
Synoptic-scale weather systems frequently disturb the transport barrier formed by the polar dome and foster ex- change between air masses from midlatitudes and polar re- gions. During the second phase of the NETCARE 2014 measurements a pronounced low-pressure system south of Resolute Bay brought inflow from southern latitudes, which pushed the polar dome northward and significantly affected trace gas mixing ratios in the measurement region. Mean CO mixing ratios increased from 77.9 ± 2.5 to 84.9 ± 4.7 ppbv between these two regimes. At the same time CO2 mix- ing ratios significantly decreased from 398.16 ± 1.01 to 393.81 ± 2.25 ppmv. Our results demonstrate the utility of applying a tracer-based diagnostic to determine the polar dome boundary for interpreting observations of atmospheric composition in the context of transport history
A radiation of Psylliodes flea beetles on Brassicaceae is associated with the evolution of specific detoxification enzymes
Flea beetles of the genus Psylliodes have evolved specialized interactions with plant species belonging to several distantly related families, mainly Brassicaceae, Solanaceae, and Fagaceae. This diverse host use indicates that Psylliodes flea beetles are able to cope with different chemical defense metabolites, including glucosinolates, the characteristic defense metabolites of Brassicaceae. Here we investigated the evolution of host use and the emergence of a glucosinolate-specific detoxification mechanism in Psylliodes flea beetles. In phylogenetic analyses, Psylliodes species clustered into four major clades, three of which contained mainly species specialized on either Brassicaceae, Solanaceae, or Fagaceae. Most members of the fourth clade have broader host use, including Brassicaceae and Poaceae as major host plant families. Ancestral state reconstructions suggest that Psylliodes flea beetles were initially associated with Brassicaceae and then either shifted to Solanaceae or Fagaceae, or expanded their host repertoire to Poaceae. Despite a putative ancestral association with Brassicaceae, we found evidence that the evolution of glucosinolate-specific detoxification enzymes coincides with the radiation of Psylliodes on Brassicaceae, suggesting that these are not required for using Brassicaceae as hosts but could improve the efficiency of host use by specialized Psylliodes species.Funding was provided by the Max Planck Society, the International Max Planck Research School, and the Daimler & Benz Foundation (project number 32-01/14). Harald Letsch was funded by the Austrian Science Fund (FWF) project P32029-B. Part of the genetic results presented here were achieved in the frame of the German Barcode of Life, a project of the Humboldt Ring, grant funded by the German Federal Ministry for Education and Research (GBOL1: BMBF #01LI1101A/#01LI1501A).Peer reviewe
Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic
Observations addressing effects of aerosol par- ticles on summertime Arctic clouds are limited. An air- borne study, carried out during July 2014 from Resolute Bay, Nunavut, Canada, as part of the Canadian NETCARE project, provides a comprehensive in situ look into some effects of aerosol particles on liquid clouds in the clean environment of the Arctic summer. Median cloud droplet number concentrations (CDNC) from 62 cloud samples are 10 cm−3 for low-altitude cloud (clouds topped below 200 m) and 101 cm−3 for higher-altitude cloud (clouds based above 200m). The lower activation size of aerosol particles is ≤50nm diameter in about 40% of the cases. Particles as small as 20 nm activated in the higher-altitude clouds consis- tent with higher supersaturations (S) for those clouds inferred from comparison of the CDNC with cloud condensation nu- cleus (CCN) measurements. Over 60 % of the low-altitude cloud samples fall into the CCN-limited regime of Mauritsen et al. (2011), within which increases in CDNC may increase liquid water and warm the surface. These first observations of that CCN-limited regime indicate a positive association of the liquid water content (LWC) and CDNC, but no associ- ation of either the CDNC or LWC with aerosol variations. Above the Mauritsen limit, where aerosol indirect cooling may result, changes in particles with diameters from 20 to 100nm exert a relatively strong influence on the CDNC. Within this exceedingly clean environment, as defined by low carbon monoxide and low concentrations of larger parti- cles, the background CDNC are estimated to range between 16 and 160 cm−3, where higher values are due to activation of particles ≤ 50 nm that likely derive from natural sources. These observations offer the first wide-ranging reference for the aerosol cloud albedo effect in the summertime Arctic
Unraveling incompatibility between wheat and the fungal pathogen Zymoseptoria tritici through apoplastic proteomics
Background: Hemibiotrophic fungal pathogen Zymoseptoria tritici causes severe foliar disease in wheat. However, current knowledge of molecular mechanisms involved in plant resistance to Z. tritici and Z. tritici virulence factors is far from being complete. The present work investigated the proteome of leaf apoplastic fluid with emphasis on both host wheat and Z. tritici during the compatible and incompatible interactions. Results: The proteomics analysis revealed rapid host responses to the biotrophic growth, including enhanced carbohydrate metabolism, apoplastic defenses and stress, and cell wall reinforcement, might contribute to resistance. Compatibility between the host and the pathogen was associated with inactivated plant apoplastic responses as well as fungal defenses to oxidative stress and perturbation of plant cell wall during the initial biotrophic stage, followed by the strong induction of plant defenses during the necrotrophic stage. To study the role of anti-oxidative stress in Z. tritici pathogenicity in depth, a YAP1 transcription factor regulating antioxidant expression was deleted and showed the contribution to anti-oxidative stress in Z. tritici ,but was not required for pathogenicity. This result suggests the functional redundancy of antioxidants in the fungus. Conclusions: The data demonstrate that incompatibility is probably resulted from the proteome-level activation of host apoplastic defenses as well as fungal incapability to adapt to stress and interfere with host cell at the biotrophic stage of the interaction
- …