12 research outputs found

    Arbuscular Mycorrhizal Fungi Enhance Growth and Increase Concentrations of Anthocyanin, Phenolic Compounds, and Antioxidant Activity of Black Rice (<i>Oryza sativa</i> L.)

    No full text
    Black rice (Oryza sativa L.) contains high concentrations of bioactive compounds that are associated with human-health benefits. Arbuscular mycorrhizal fungi (AMF) can increase plant performance and concentrations of these bioactive compounds. In a pot experiment, the effects of four different species of AMF (Claroideoglomus etunicatum; Rhizophagus variabilis; Rhizophagus nov. spec.; Acaulospora longula) were assessed on growth performance, grain yield, concentrations of phenolic compounds and anthocyanin, and antioxidant activity of two black-rice cultivars. The experiment was a completely randomized factorial design with two factors, viz. cultivar (Niew Dam Hmong and Maled Phai) and treatment (four different species of AMF and two non-inoculated treatments, without and with mineral fertilizer). Results showed that cultivar, treatment, and their interaction were almost always significant sources of variation for both plant performance parameters and concentrations of bioactive compounds. Maled Phai showed higher performance and higher concentrations of phenolics and anthocyanins but lower antioxidant activity than Niew Dam Hmong. The non-inoculated treatment without mineral fertilizer showed the lowest performance. The non-inoculated treatment with mineral fertilizer resulted in larger root and shoot biomass than the mycorrhizal treatments, but grain yield was higher in the mycorrhizal treatments. Inoculation with R. variabilis resulted in the highest concentration of phenolics and anthocyanins. We conclude that R. variabilis was the best inoculum for increasing grain yield and bioactive compounds, especially in Maled Phai

    Enhancement of growth and Cannabinoids content of hemp (Cannabis sativa) using arbuscular mycorrhizal fungi

    Get PDF
    This study aimed to investigate the efficiency of arbuscular mycorrhizal fungi (AMF) to promote growth and cannabinoid yield of Cannabis sativa KKU05. A completely randomized design (CRD) was conducted with six replications for 60 days. Two different species of AMF, Rhizophagus prolifer PC2-2 and R. aggregatus BM-3 g3 were selected as inocula and compared with two non-mycorrhizal controls, one without synthetic fertilizer and one with synthetic NPK fertilizer. The unfertilized non-mycorrhizal plants had the lowest performance, whereas plants inoculated with R. aggregatus BM-3 g3 performed best, both in terms of plant biomass and concentrations of CBD and THC. There were no significant differences in plant biomass and cannabinoid concentrations between non-mycorrhizal plants that received synthetic fertilizer and mycorrhizal plants with inoculum of R. prolifer PC2-2. Our data demonstrate the great potential for cannabis cultivation without risking deterioration of soil structure, such as soil hardening and increased acidity, which might be induced by long-term use of synthetic fertilizer

    Ten-year persistence and evolution of Plasmodium falciparum antifolate and antisulfonamide resistance markers pfdhfr and pfdhps in three Asian countries

    No full text
    Background The amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxinepyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used. Methods A total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay. Results Sequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia. Conclusion Despite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns

    Ten-year persistence and evolution of Plasmodium falciparum antifolate and anti-sulfonamide resistance markers pfdhfr and pfdhps in three Asian countries.

    Get PDF
    BackgroundThe amplification of GTP cyclohydrolase 1 (pfgch1) in Plasmodium falciparum has been linked to the upregulation of the pfdhfr and pfdhps genes associated with resistance to the antimalarial drug sulfadoxine-pyrimethamine. During the 1990s and 2000s, sulfadoxine-pyrimethamine was withdrawn from use as first-line treatment in southeast Asia due to clinical drug resistance. This study assessed the temporal and geographic changes in the prevalence of pfdhfr and pfdhps gene mutations and pfgch1 amplification a decade after sulfadoxine-pyrimethamine had no longer been widely used.MethodsA total of 536 P. falciparum isolates collected from clinical trials in Thailand, Cambodia, and Lao PDR between 2008 and 2018 were assayed. Single nucleotide polymorphisms of the pfdhfr and pfdhps genes were analyzed using nested PCR and Sanger sequencing. Gene copy number variations of pfgch1 were investigated using real-time polymerase chain reaction assay.ResultsSequences of the pfdhfr and pfdhps genes were obtained from 96% (517/536) and 91% (486/536) of the samples, respectively. There were 59 distinct haplotypes, including single to octuple mutations. The two major haplotypes observed included IRNI-AGEAA (25%) and IRNL-SGKGA (19%). The sextuple mutation IRNL-SGKGA increased markedly over time in several study sites, including Pailin, Preah Vihear, Ratanakiri, and Ubon Ratchathani, whereas IRNI-AGEAA decreased over time in Preah Vihear, Champasak, and Ubon Ratchathani. Octuple mutations were first observed in west Cambodia in 2011 and subsequently in northeast Cambodia, as well as in southern Laos by 2018. Amplification of the pfgch1 gene increased over time across the region, particularly in northeast Thailand close to the border with Laos and Cambodia.ConclusionDespite the fact that SP therapy was discontinued in Thailand, Cambodia, and Laos decades ago, parasites retained the pfdhfr and pfdhps mutations. Numerous haplotypes were found to be prevalent among the parasites. Frequent monitoring of pfdhfr and pfdhps in these areas is required due to the relatively rapid evolution of mutation patterns
    corecore