6,637 research outputs found
Analysis of Flatness Measurement and Form Stability of a Granite Surface Plate
It is rather difficult to compare quantitatively flatness measuring results of one and the same object (e.g. in case of a long-term stability investigation) or the results of a series of products (e.g. from the same machinetool in order to indicate machinetool-influences). An extension of a computerprogram applied to the evaluation of flatness measurement (as described in the CIRP-Annals, vol. 26 (1977), no.1), separates the form deviations of a surface into a geometrical part and a random part.\ud
The geometric part consists of a best-fitting non-flat, reference plane, composed of the single curvature of a sphere and the double curvature of a real twisted plane. Three parameters (the dimensionless curvature parameters of sphericity and torsion, together with the direction of the torsionvector) are able to characterize the geometrical part of the surface; a fourth one is a measure for the random part.\ud
Advantages of the method are demonstrated with the aid of a long-term investigation into the form stability of a granite surface plate.\ud
Another extension of the program makes it now possible to measure surfaces with non-rectangular contours in the same way as it is being done in case of a rectangular surface plate.\u
Forming the Moon from terrestrial silicate-rich material
Recent high-precision measurements of the isotopic composition of lunar rocks
demonstrate that the bulk silicate Earth and the Moon show an unexpectedly high
degree of similarity. This is inconsistent with one of the primary results of
classic dynamical simulations of the widely accepted giant impact model for the
formation of the Moon, namely that most of the mass of the Moon originates from
the impactor, not Earth.
Resolution of this discrepancy without changing the main premises of the
giant impact model requires total isotopic homogenisation of Earth and impactor
material after the impact for a wide range of elements including O, Si, K, Ti,
Nd and W. Even if this process could explain the O isotope similarity, it is
unlikely to work for the much heavier, refractory elements. Given the
increasing uncertainty surrounding the giant impact model in light of these
geochemical data, alternative hypotheses for lunar formation should be
explored. In this paper, we revisit the hypothesis that the Moon was formed
directly from terrestrial mantle material. We show that the dynamics of this
scenario requires a large amount of energy, almost instantaneously generated
additional energy. The only known source for this additional energy is nuclear
fission. We show that it is feasible to form the Moon through the ejection of
terrestrial silicate material triggered by a nuclear explosion at Earths
core-mantle boundary (CMB), causing a shock wave propagating through the Earth.
Hydrodynamic modelling of this scenario shows that a shock wave created by
rapidly expanding plasma resulting from the explosion disrupts and expels
overlying mantle and crust material.Comment: 26 pages, 5 figures, 1 tabl
Helicity Amplitudes for Charmonium Production in Hadron-Hadron and Photon-Hadron Collisions
We present the gluon-gluon and photon-gluon helicity amplitudes for color
singlet and octet charmonium production in polarized and unpolarized
hadron-hadron and photon-hadron collisions.Comment: 11 pages amstex no figure
Accurate effective pair potentials for polymer solutions
Dilute or semi-dilute solutions of non-intersecting self-avoiding walk (SAW)
polymer chains are mapped onto a fluid of ``soft'' particles interacting via an
effective pair potential between their centers of mass. This mapping is
achieved by inverting the pair distribution function of the centers of mass of
the original polymer chains, using integral equation techniques from the theory
of simple fluids. The resulting effective pair potential is finite at all
distances, has a range of the order of the radius of gyration, and turns out to
be only moderately concentration-dependent. The dependence of the effective
potential on polymer length is analyzed in an effort to extract the scaling
limit. The effective potential is used to derive the osmotic equation of state,
which is compared to simulation data for the full SAW segment model, and to the
predictions of renormalization group calculations. A similar inversion
procedure is used to derive an effective wall-polymer potential from the center
of mass density profiles near the wall, obtained from simulations of the full
polymer segment model. The resulting wall-polymer potential turns out to depend
strongly on bulk polymer concentration when polymer-polymer correlations are
taken into account, leading to a considerable enhancement of the effective
repulsion with increasing concentration. The effective polymer-polymer and
wall-polymer potentials are combined to calculate the depletion interaction
induced by SAW polymers between two walls. The calculated depletion interaction
agrees well with the ``exact'' results from much more computer-intensive direct
simulation of the full polymer-segment model, and clearly illustrates the
inadequacy -- in the semi-dilute regime -- of the standard Asakura-Oosawa
approximation based on the assumption of non-interacting polymer coils.Comment: 18 pages, 24 figures, ReVTeX, submitted to J. Chem. Phy
Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy
Far-infrared vibrational spectroscopy by multiple photon dissociation has
proven to be a very useful technique for the structural fingerprinting of small
metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters,
measured vibrational spectra of small cationic cobalt clusters show a strong
dependence on the number of adsorbed Ar probe atoms, which increases with
decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore
use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and
its role for the vibrational spectra. In a first step, energetically low-lying
isomer structures are identified through first-principles basin-hopping
sampling runs and their vibrational spectra computed for a varying number of
adsorbed Ar atoms. A comparison of these fingerprints with the experimental
data enables in some cases a unique assignment of the cluster structure.
Independent of the specific low-lying isomer, we obtain a pronounced increase
of the Ar binding energy for the smallest cluster sizes, which correlates
nicely with the observed increased influence of the Ar probe atoms on the IR
spectra. Further analysis of the electronic structure motivates a simple
electrostatic picture that not only explains this binding energy trend, but
also why the influence of the rare-gas atom is much stronger than in the
previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Unconventional Magnetization below 25 K in Nitrogen-doped Diamond provides hints for the existence of Superconductivity and Superparamagnetism
The magnetization of nitrogen-doped single crystalline diamond bulk samples shows unconventional field and temperature hysteresis loops at T ≲ 25 K. The results suggest the existence of superparamagnetic and superconducting regions in samples with nitrogen concentration <200 ppm. Both phases vanish at temperatures above 25 K where the samples show diamagnetic behavior similar to undoped diamond. The observation of superparamagnetism and superconductivity is attributed to the nitrogen doping and to the existence of defective regions. From particle-induced X-ray emission with ppm resolution we rule out that the main observations below 25 K are due to magnetic impurities. We investigated also the magnetic properties of ferromagnetic/high-temperature superconducting oxide bilayers. The magnetization results obtained from those bilayers show remarkable similarities to the ones in nitrogen-doped diamond
Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors
We present time-resolved photoluminescence measurements on two series of
oligo-p-phenylenevinylene materials that self-assemble into supramolecular
nanostructures with thermotropic reversibility in dodecane. One set of
derivatives form chiral, helical stacks while the second set form less
organised, frustrated stacks. Here we study the effects of supramolecular
organisation on the resonance energy transfer rates. We measure these rates in
nanoassemblies formed with mixed blends of oligomers and compare them with the
rates predicted by Foerster theory. Our results and analysis show that control
of supramolecular order in the nanometre lengthscale has a dominant effect on
the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy
- …