6,637 research outputs found

    Analysis of Flatness Measurement and Form Stability of a Granite Surface Plate

    Get PDF
    It is rather difficult to compare quantitatively flatness measuring results of one and the same object (e.g. in case of a long-term stability investigation) or the results of a series of products (e.g. from the same machinetool in order to indicate machinetool-influences). An extension of a computerprogram applied to the evaluation of flatness measurement (as described in the CIRP-Annals, vol. 26 (1977), no.1), separates the form deviations of a surface into a geometrical part and a random part.\ud The geometric part consists of a best-fitting non-flat, reference plane, composed of the single curvature of a sphere and the double curvature of a real twisted plane. Three parameters (the dimensionless curvature parameters of sphericity and torsion, together with the direction of the torsionvector) are able to characterize the geometrical part of the surface; a fourth one is a measure for the random part.\ud Advantages of the method are demonstrated with the aid of a long-term investigation into the form stability of a granite surface plate.\ud Another extension of the program makes it now possible to measure surfaces with non-rectangular contours in the same way as it is being done in case of a rectangular surface plate.\u

    Forming the Moon from terrestrial silicate-rich material

    Get PDF
    Recent high-precision measurements of the isotopic composition of lunar rocks demonstrate that the bulk silicate Earth and the Moon show an unexpectedly high degree of similarity. This is inconsistent with one of the primary results of classic dynamical simulations of the widely accepted giant impact model for the formation of the Moon, namely that most of the mass of the Moon originates from the impactor, not Earth. Resolution of this discrepancy without changing the main premises of the giant impact model requires total isotopic homogenisation of Earth and impactor material after the impact for a wide range of elements including O, Si, K, Ti, Nd and W. Even if this process could explain the O isotope similarity, it is unlikely to work for the much heavier, refractory elements. Given the increasing uncertainty surrounding the giant impact model in light of these geochemical data, alternative hypotheses for lunar formation should be explored. In this paper, we revisit the hypothesis that the Moon was formed directly from terrestrial mantle material. We show that the dynamics of this scenario requires a large amount of energy, almost instantaneously generated additional energy. The only known source for this additional energy is nuclear fission. We show that it is feasible to form the Moon through the ejection of terrestrial silicate material triggered by a nuclear explosion at Earths core-mantle boundary (CMB), causing a shock wave propagating through the Earth. Hydrodynamic modelling of this scenario shows that a shock wave created by rapidly expanding plasma resulting from the explosion disrupts and expels overlying mantle and crust material.Comment: 26 pages, 5 figures, 1 tabl

    Helicity Amplitudes for Charmonium Production in Hadron-Hadron and Photon-Hadron Collisions

    Get PDF
    We present the gluon-gluon and photon-gluon helicity amplitudes for color singlet and octet charmonium production in polarized and unpolarized hadron-hadron and photon-hadron collisions.Comment: 11 pages amstex no figure

    Accurate effective pair potentials for polymer solutions

    Full text link
    Dilute or semi-dilute solutions of non-intersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of ``soft'' particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the ``exact'' results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy -- in the semi-dilute regime -- of the standard Asakura-Oosawa approximation based on the assumption of non-interacting polymer coils.Comment: 18 pages, 24 figures, ReVTeX, submitted to J. Chem. Phy

    Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy

    Full text link
    Far-infrared vibrational spectroscopy by multiple photon dissociation has proven to be a very useful technique for the structural fingerprinting of small metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters, measured vibrational spectra of small cationic cobalt clusters show a strong dependence on the number of adsorbed Ar probe atoms, which increases with decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and its role for the vibrational spectra. In a first step, energetically low-lying isomer structures are identified through first-principles basin-hopping sampling runs and their vibrational spectra computed for a varying number of adsorbed Ar atoms. A comparison of these fingerprints with the experimental data enables in some cases a unique assignment of the cluster structure. Independent of the specific low-lying isomer, we obtain a pronounced increase of the Ar binding energy for the smallest cluster sizes, which correlates nicely with the observed increased influence of the Ar probe atoms on the IR spectra. Further analysis of the electronic structure motivates a simple electrostatic picture that not only explains this binding energy trend, but also why the influence of the rare-gas atom is much stronger than in the previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Unconventional Magnetization below 25 K in Nitrogen-doped Diamond provides hints for the existence of Superconductivity and Superparamagnetism

    Get PDF
    The magnetization of nitrogen-doped single crystalline diamond bulk samples shows unconventional field and temperature hysteresis loops at T ≲ 25 K. The results suggest the existence of superparamagnetic and superconducting regions in samples with nitrogen concentration <200 ppm. Both phases vanish at temperatures above 25 K where the samples show diamagnetic behavior similar to undoped diamond. The observation of superparamagnetism and superconductivity is attributed to the nitrogen doping and to the existence of defective regions. From particle-induced X-ray emission with ppm resolution we rule out that the main observations below 25 K are due to magnetic impurities. We investigated also the magnetic properties of ferromagnetic/high-temperature superconducting oxide bilayers. The magnetization results obtained from those bilayers show remarkable similarities to the ones in nitrogen-doped diamond

    Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors

    Get PDF
    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral, helical stacks while the second set form less organised, frustrated stacks. Here we study the effects of supramolecular organisation on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Foerster theory. Our results and analysis show that control of supramolecular order in the nanometre lengthscale has a dominant effect on the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy
    corecore