6,835 research outputs found
Magnetic Trapping of Cold Bromine Atoms
Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime
is demonstrated for the first time. The atoms are produced by photodissociation
of Br molecules in a molecular beam. The lab-frame velocity of Br atoms is
controlled by the wavelength and polarization of the photodissociation laser.
Careful selection of the wavelength results in one of the pair of atoms having
sufficient velocity to exactly cancel that of the parent molecule, and it
remains stationary in the lab frame. A trap is formed at the null point between
two opposing neodymium permanent magnets. Dissociation of molecules at the
field minimum results in the slowest fraction of photofragments remaining
trapped. After the ballistic escape of the fastest atoms, the trapped slow
atoms are only lost by elastic collisions with the chamber background gas. The
measured loss rate is consistent with estimates of the total cross section for
only those collisions transferring sufficient kinetic energy to overcome the
trapping potential
Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model
The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes – in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range
Semiclassical theory of cavity-assisted atom cooling
We present a systematic semiclassical model for the simulation of the
dynamics of a single two-level atom strongly coupled to a driven high-finesse
optical cavity. From the Fokker-Planck equation of the combined atom-field
Wigner function we derive stochastic differential equations for the atomic
motion and the cavity field. The corresponding noise sources exhibit strong
correlations between the atomic momentum fluctuations and the noise in the
phase quadrature of the cavity field. The model provides an effective tool to
investigate localisation effects as well as cooling and trapping times. In
addition, we can continuously study the transition from a few photon quantum
field to the classical limit of a large coherent field amplitude.Comment: 10 pages, 8 figure
Singlet levels of the NV centre in diamond
The characteristic transition of the NV- centre at 637 nm is between
and triplet states. There are also
intermediate and singlet states, and the
infrared transition at 1042 nm between these singlets is studied here using
uniaxial stress. The stress shift and splitting parameters are determined, and
the physical interaction giving rise to the parameters is considered within the
accepted electronic model of the centre. It is established that this
interaction for the infrared transition is due to a modification of
electron-electron Coulomb repulsion interaction. This is in contrast to the
visible 637 nm transition where shifts and splittings arise from modification
to the one-electron Coulomb interaction. It is also established that a dynamic
Jahn-Teller interaction is associated with the singlet state,
which gives rise to a vibronic level 115 above the
electronic state. Arguments associated with this level are
used to provide experimental confirmation that the is the
upper singlet level and is the lower singlet level.Comment: 19 pages, 6 figure
Arkansas Cotton Variety Test 2004
The primary aim of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed dealers establish marketing strategies and assists producers in choosing varieties to plant
Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production
Our main goals are to get a deeper insight into the evolution and final fates
of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to
investigate their C, N, and O yields. Using the Monash University Stellar
Evolution code we computed and analysed the evolution of stars of metallicity Z
= 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the
late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our
model stars experience a strong C, N, and O envelope enrichment either due to
the second dredge-up, the dredge-out phenomenon, or the third dredge-up early
during the TP-(S)AGB phase. Their late evolution is therefore similar to that
of higher metallicity objects. When using a standard prescription for the mass
loss rates during the TP-(S)AGB phase, the computed stars lose most of their
envelopes before their cores reach the Chandrasekhar mass, so our standard
models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we
find that the reduction of only one order of magnitude in the mass-loss rates,
which are particularly uncertain at this metallicity, would prevent the
complete ejection of the envelope, allowing the stars to either explode as an
SNI1/2 or become an electron-capture SN. Our calculations stop due to an
instability near the base of the convective envelope that hampers further
convergence and leaves remnant envelope masses between 0.25 M_sun for our 4
M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N,
and O yields derived from our full calculations and computed under two
different assumptions, namely, that the instability causes a practically
instant loss of the remnant envelope or that the stars recover and proceed with
further thermal pulses. Our results have implications for the early chemical
evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
Assignment of the NV0 575 nm zero-phonon line in diamond to a 2E-2A2 transition
The time-averaged emission spectrum of single nitrogen-vacancy defects in
diamond gives zero-phonon lines of both the negative charge state at 637 nm
(1.945 eV) and the neutral charge state at 575 nm (2.156 eV). This occurs
through photo-conversion between the two charge states. Due to strain in the
diamond the zero-phonon lines are split and it is found that the splitting and
polarization of the two zero-phonon lines are the same. From this observation
and consideration of the electronic structure of the nitrogen-vacancy center it
is concluded that the excited state of the neutral center has A2 orbital
symmetry. The assignment of the 575 nm transition to a 2E - 2A2 transition has
not been established previously.Comment: 5 pages, 5 figure
Entanglement of indistinguishable particles in condensed matter physics
The concept of entanglement in systems where the particles are
indistinguishable has been the subject of much recent interest and controversy.
In this paper we study the notion of entanglement of particles introduced by
Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific
physical systems, including some that occur in condensed matter physics. The
entanglement of particles is relevant when the identical particles are
itinerant and so not distinguished by their position as in spin models. We show
that entanglement of particles can behave differently to other approaches that
have been used previously, such as entanglement of modes (occupation-number
entanglement) and the entanglement in the two-spin reduced density matrix. We
argue that the entanglement of particles is what could actually be measured in
most experimental scenarios and thus its physical significance is clear. This
suggests entanglement of particles may be useful in connecting theoretical and
experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor
changes, added references
- …