118 research outputs found
Branch Mode Selection during Early Lung Development
Many organs of higher organisms, such as the vascular system, lung, kidney,
pancreas, liver and glands, are heavily branched structures. The branching
process during lung development has been studied in great detail and is
remarkably stereotyped. The branched tree is generated by the sequential,
non-random use of three geometrically simple modes of branching (domain
branching, planar and orthogonal bifurcation). While many regulatory components
and local interactions have been defined an integrated understanding of the
regulatory network that controls the branching process is lacking. We have
developed a deterministic, spatio-temporal differential-equation based model of
the core signaling network that governs lung branching morphogenesis. The model
focuses on the two key signaling factors that have been identified in
experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well
as the SHH receptor patched (Ptc). We show that the reported biochemical
interactions give rise to a Schnakenberg-type Turing patterning mechanisms that
allows us to reproduce experimental observations in wildtype and mutant mice.
The kinetic parameters as well as the domain shape are based on experimental
data where available. The developed model is robust to small absolute and large
relative changes in the parameter values. At the same time there is a strong
regulatory potential in that the switching between branching modes can be
achieved by targeted changes in the parameter values. We note that the sequence
of different branching events may also be the result of different growth
speeds: fast growth triggers lateral branching while slow growth favours
bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is
sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio
“One-Size-Fits-All”? Optimizing Treatment Duration for Bacterial Infections
Historically, antibiotic treatment guidelines have aimed to maximize treatment efficacy and minimize toxicity, but have not considered the evolution of antibiotic resistance. Optimizing the duration and dosing of treatment to minimize the duration of symptomatic infection and selection pressure for resistance simultaneously has the potential to extend the useful therapeutic life of these valuable life-saving drugs without compromising the interests of individual patients
Ticks Associated with Macquarie Island Penguins Carry Arboviruses from Four Genera
Macquarie Island, a small subantarctic island, is home to rockhopper, royal and king penguins, which are often infested with the globally distributed seabird tick, Ixodes uriae. A flavivirus, an orbivirus, a phlebovirus, and a nairovirus were isolated from these ticks and partial sequences obtained. The flavivirus was nearly identical to Gadgets Gully virus, isolated some 30 year previously, illustrating the remarkable genetic stability of this virus. The nearest relative to the orbivirus (for which we propose the name Sandy Bay virus) was the Scottish Broadhaven virus, and provided only the second available sequences from the Great Island orbivirus serogroup. The phlebovirus (for which we propose the name Catch-me-cave virus) and the previously isolated Precarious Point virus were distinct but related, with both showing homology with the Finnish Uukuniemi virus. These penguin viruses provided the second and third available sequences for the Uukuniemi group of phleboviruses. The nairovirus (for which we propose the name Finch Creek virus) was shown to be related to the North American Tillamook virus, the Asian Hazara virus and Nairobi sheep disease virus. Macquarie Island penguins thus harbour arboviruses from at least four of the seven arbovirus-containing genera, with related viruses often found in the northern hemisphere
Mite species inhabiting commercial bumblebee (Bombus terrestris) nests in Polish greenhouses
Nests of social insects are usually inhabited by various mite species that feed on pollen, other micro-arthropods or are parasitic. Well-known negative effects of worldwide economic importance are caused by mites parasitizing honeybee colonies. Lately, attention has focused on the endoparasitic mite Locustacarus buchneri that has been found in commercial bumblebees. However, little is known of other mites associated with commercial bumblebee nests. Transportation of commercial bumblebee colonies with unwanted residents may introduce foreign mite species to new localities. In this study, we assessed the prevalence and species composition of mites associated with commercial bumblebee nests and determined if the mites are foreign species for Poland and for Europe. The study was conducted on 37 commercial bumblebee nests from two companies (Dutch and Israeli), originating from two greenhouses in southern Poland, and on 20 commercial bumblebee colonies obtained directly from suppliers. The species composition and abundance of mites inhabiting commercial bumblebee nests were determined. Seven mite species from three families were found in nests after greenhouse exploitation. The predominant mite species was Tyrophagus putrescentiae (Acaridae) that was a 100-fold more numerous than representatives of the family Laelapidae (Hypoaspis marginepilosa, H. hyatti, H. bombicolens). Representatives of Parasitidae (Parasitellus fucorum, P. crinitus, P. ignotus) were least numerous. All identified mite species are common throughout Europe, foreign species were not found. Mites were not detected in nests obtained directly from suppliers. We conclude that probably bumblebee nests are invaded by local mite species during greenhouse exploitation
Systemic Treatments for Mesothelioma: Standard and Novel
Systemic therapy is the only treatment option for the majority of mesothelioma
patients, for whom age, co-morbid medical illnesses, non-epithelial histology, and locally advanced disease often preclude surgery. For many years, chemotherapy had a minimal impact on the natural history of this cancer, engendering considerable nihilism. Countless drugs were evaluated, most of which achieved response rates below 20% and median survival of <1 year. Several factors have hampered the evaluation of systemic regimens in patients with mesothelioma. The disease is uncommon, affecting only about 2500 Americans annually. Thus, most clinical trials are small, and randomized studies are challenging to accrue. There is significant heterogeneity within the patient populations of these small trials, for several reasons. Since all of the staging systems for mesothelioma are surgically based, it is almost impossible to accurately determine the stage of a patient who has not been resected. Patients with very early stage disease may be lumped together with far more advanced patients in the same study. The disease itself is heterogenous, with many different prognostic factors, most notably three pathologic subtypes—epithelial, sarcomatoid, and
biphasic—that have different natural histories, and varying responses to treatment. Finally, response assessment is problematic, since pleural-based lesions are difficult to measure accurately and reproducibly. Assessment criteria often vary between trials, making some cross-trial comparisons difficult to interpret. Despite these limitations, in recent years, there has been a surge of optimism regarding systemic treatment of this disease. Several cytotoxic agents have been shown to generate reproducible
responses, improve quality of life, or prolong survival in mesothelioma. Drugs with single-agent activity include pemetrexed, raltitrexed, vinorelbine, and vinflunine. The addition of pemetrexed or raltitrexed to cisplatin prolongs survival. The addition of cisplatin to pemetrexed, raltitrexed, gemcitabine, irinotecan, or vinorelbine improves response rate. The combination of pemetrexed plus cisplatin is considered the benchmark front-line regimen for this disease, based on a phase III trial in 456 patients that yielded a response rate of 41% and a median survival of 12.1 months. Vitamin supplementation with folic acid is essential to decrease toxicity, though recent data suggests that there may be an optimum dose of folic acid that should be administered; higher doses may diminish the effectiveness of pemetrexed. There are also several unresolved questions about the duration and timing of treatment with pemetrexed that are the subject of planned clinical trials. It is essential to recognize that the improvements observed with the pemetrexed/cisplatin combination, though real, are still modest. Other active drugs or drug combinations may be more appropriate for specific individuals, and further research is still needed to improve upon these results. Since the majority of mesotheliomas in the United States occur in the elderly, non-cisplatin-containing pemetrexed combinations may be more appropriate for some patients. Now that effective agents have been developed for initial treatment, several classical cytotoxic drugs and many novel agents are being evaluated in the second-line setting. These include drugs targeted against the epidermal growth factor, platelet-derived growth factor, vascular endothelial growth factor, src kinase, histone deacetylase, the proteasome, and mesothelin. Given the progress made in recent years, there is reason to believe that more effective treatments will continue to be developed
Identifying lineage effects when controlling for population structure improves power in bacterial association studies
Bacteria pose unique challenges for genome-wide association studies because of strong structuring into distinct strains and substantial linkage disequilibrium across the genome1,2. Although methods developed for human studies can correct for strain structure3,4, this risks considerable loss-of-power because genetic differences between strains often contribute substantial phenotypic variability5. Here, we propose a new method that captures lineage-level associations even when locus-specific associations cannot be fine-mapped. We demonstrate its ability to detect genes and genetic variants underlying resistance to 17 antimicrobials in 3,144 isolates from four taxonomically diverse clonal and recombining bacteria: Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Strong selection, recombination and penetrance confer high power to recover known antimicrobial resistance mechanisms and reveal a candidate association between the outer membrane porin nmpC and cefazolin resistance in E. coli. Hence, our method pinpoints locus-specific effects where possible and boosts power by detecting lineage-level differences when fine-mapping is intractable
Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB-AbaS-Loki
© 2017 Turner et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB-AbaS-Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME-AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB-PmaS-IMEP1 and Pseudomonas phages vB-Pae-Kakheti25, vB-PaeS-SCH-Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB-AbaS-Loki was deposited in the European Nucleotide Archive (ENA) under the accession number LN890663. Copyright
Is Chytridiomycosis an Emerging Infectious Disease in Asia?
The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused dramatic amphibian population declines and extinctions in Australia, Central and North America, and Europe. Bd is associated with >200 species extinctions of amphibians, but not all species that become infected are susceptible to the disease. Specifically, Bd has rapidly emerged in some areas of the world, such as in Australia, USA, and throughout Central and South America, causing population and species collapse. The mechanism behind the rapid global emergence of the disease is poorly understood, in part due to an incomplete picture of the global distribution of Bd. At present, there is a considerable amount of geographic bias in survey effort for Bd, with Asia being the most neglected continent. To date, Bd surveys have been published for few Asian countries, and infected amphibians have been reported only from Indonesia, South Korea, China and Japan. Thus far, there have been no substantiated reports of enigmatic or suspected disease-caused population declines of the kind that has been attributed to Bd in other areas. In order to gain a more detailed picture of the distribution of Bd in Asia, we undertook a widespread, opportunistic survey of over 3,000 amphibians for Bd throughout Asia and adjoining Papua New Guinea. Survey sites spanned 15 countries, approximately 36° latitude, 111° longitude, and over 2000 m in elevation. Bd prevalence was very low throughout our survey area (2.35% overall) and infected animals were not clumped as would be expected in epizootic events. This suggests that Bd is either newly emerging in Asia, endemic at low prevalence, or that some other ecological factor is preventing Bd from fully invading Asian amphibians. The current observed pattern in Asia differs from that in many other parts of the world
The Complete Genome Sequence of Fibrobacter succinogenes S85 Reveals a Cellulolytic and Metabolic Specialist
Fibrobacter succinogenes is an important member of the rumen
microbial community that converts plant biomass into nutrients usable by its
host. This bacterium, which is also one of only two cultivated species in its
phylum, is an efficient and prolific degrader of cellulose. Specifically, it has
a particularly high activity against crystalline cellulose that requires close
physical contact with this substrate. However, unlike other known cellulolytic
microbes, it does not degrade cellulose using a cellulosome or by producing high
extracellular titers of cellulase enzymes. To better understand the biology of
F. succinogenes, we sequenced the genome of the type strain
S85 to completion. A total of 3,085 open reading frames were predicted from its
3.84 Mbp genome. Analysis of sequences predicted to encode for
carbohydrate-degrading enzymes revealed an unusually high number of genes that
were classified into 49 different families of glycoside hydrolases, carbohydrate
binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of
the 31 identified cellulases, none contain CBMs in families 1, 2, and 3,
typically associated with crystalline cellulose degradation. Polysaccharide
hydrolysis and utilization assays showed that F. succinogenes
was able to hydrolyze a number of polysaccharides, but could only utilize the
hydrolytic products of cellulose. This suggests that F.
succinogenes uses its array of hemicellulose-degrading enzymes to
remove hemicelluloses to gain access to cellulose. This is reflected in its
genome, as F. succinogenes lacks many of the genes necessary to
transport and metabolize the hydrolytic products of non-cellulose
polysaccharides. The F. succinogenes genome reveals a bacterium
that specializes in cellulose as its sole energy source, and provides insight
into a novel strategy for cellulose degradation
Do Frogs Get Their Kicks on Route 66? Continental U.S. Transect Reveals Spatial and Temporal Patterns of Batrachochytrium dendrobatidis Infection
The chytrid fungus Batrachochytrium dendrobatidis (Bd) has been devastating amphibians globally. Two general scenarios have been proposed for the nature and spread of this pathogen: Bd is an epidemic, spreading as a wave and wiping out individuals, populations, and species in its path; and Bd is endemic, widespread throughout many geographic regions on every continent except Antarctica. To explore these hypotheses, we conducted a transcontinental transect of United States Department of Defense (DoD) installations along U.S. Highway 66 from California to central Illinois, and continuing eastward to the Atlantic Seaboard along U.S. Interstate 64 (in sum from Marine Corps Base Camp Pendleton in California to Naval Air Station Oceana in Virginia). We addressed the following questions: 1) Does Bd occur in amphibian populations on protected DoD environments? 2) Is there a temporal pattern to the presence of Bd? 3) Is there a spatial pattern to the presence of Bd? and 4) In these limited human-traffic areas, is Bd acting as an epidemic (i.e., with evidence of recent introduction and/or die-offs due to chytridiomycosis), or as an endemic (present without clinical signs of disease)? Bd was detected on 13 of the 15 bases sampled. Samples from 30 amphibian species were collected (10% of known United States' species); half (15) tested Bd positive. There was a strong temporal (seasonal) component; in total, 78.5% of all positive samples came in the first (spring/early-summer) sampling period. There was also a strong spatial component—the eleven temperate DoD installations had higher prevalences of Bd infection (20.8%) than the four arid (<60 mm annual precipitation) bases (8.5%). These data support the conclusion that Bd is now widespread, and promote the idea that Bd can today be considered endemic across much of North America, extending from coast-to-coast, with the exception of remote pockets of naïve populations
- …