279 research outputs found
Model Predictive Control for Dual Active Bridge in Naval DC Microgrids Supplying Pulsed Power Loads Featuring Fast Transition and Online Transformer Current Minimization
Pulsed power loads (PPLs) are commonly incorporated in medium voltage dc microgrids on naval vessels. To mitigate their detrimental effects, dedicated energy storage systems can be installed and their converters need to have excellent disturbance rejection capability. To facilitate this objective, a moving-discretized-control-set model-predictive-control (MDCS-MPC) is proposed in this letter and applied on a dual-active-bridge converter. Fixed switching frequency is maintained, enabling easy passive components design. The proposed MDCS-MPC has a small number of calculating points in each switching period, which enables the implementation in standard commercial control platforms. The operating principle of the MDCS-MPC is introduced in development of a cost function that, on one hand, provides stiff voltage regulation; on the other hand, minimizes transformer current stress online. Theoretical claims are verified on a 20 kHz 1 kW dual active bridge
Use of Leishmania major parasites expressing a recombinant Trypanosoma cruzi antigen as live vaccines against Chagas disease
INTRODUCTION:
METHODS: We generated recombinant
RESULTS: We demonstrate that mice inoculated with these recombinant TS-expressing
DISCUSSION: Altogether, these data indicate tha
Efficacy of adjunctive azithromycin versus single-dose cephalosporin prophylaxis for caesarean scar defect : Study protocol for a randomised controlled trial
Peer reviewedPublisher PD
Green's functions for parabolic systems of second order in time-varying domains
We construct Green's functions for divergence form, second order parabolic
systems in non-smooth time-varying domains whose boundaries are locally
represented as graph of functions that are Lipschitz continuous in the spatial
variables and 1/2-H\"older continuous in the time variable, under the
assumption that weak solutions of the system satisfy an interior H\"older
continuity estimate. We also derive global pointwise estimates for Green's
function in such time-varying domains under the assumption that weak solutions
of the system vanishing on a portion of the boundary satisfy a certain local
boundedness estimate and a local H\"older continuity estimate. In particular,
our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur
Rotation Symmetry Spontaneous Breaking of Edge States in Zigzag Carbon Nanotubes
Analytical solutions of the edge states were obtained for the (N, 0) type
carbon nanotubes with distorted ending bonds. It was found that the edge states
are mixed via the distortion. The total energies for N=5 and N>=7 are lower in
the asymmetric configurations of ending bonds than those having axial rotation
symmetry. Thereby the symmetry is breaking spontaneously. The results imply
that the symmetry of electronic states at the apex depends on the occupation;
the electron density pattern at the apex could change dramatically and could be
controlled by applying an external field.Comment: 19 pages, 3 figure
Facile Synthesis of High Quality Graphene Nanoribbons
Graphene nanoribbons have attracted attention for their novel electronic and
spin transport properties1-6, and because nanoribbons less than 10 nm wide have
a band gap that can be used to make field effect transistors. However,
producing nanoribbons of very high quality, or in high volumes, remains a
challenge. Here, we show that pristine few-layer nanoribbons can be produced by
unzipping mildly gas-phase oxidized multiwalled carbon nanotube using
mechanical sonication in an organic solvent. The nanoribbons exhibit very high
quality, with smooth edges (as seen by high-resolution transmission electron
microscopy), low ratios of disorder to graphitic Raman bands, and the highest
electrical conductance and mobility reported to date (up to 5e2/h and 1500
cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the
nanoribbons exhibit phase coherent transport and Fabry-Perot interference,
suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2%
of the starting raw nanotube soot material, which was significantly higher than
previous methods capable of producing high quality narrow nanoribbons1. The
relatively high yield synthesis of pristine graphene nanoribbons will make
these materials easily accessible for a wide range of fundamental and practical
applications.Comment: Nature Nanotechnology in pres
Experimentally Engineering the Edge Termination of Graphene Nanoribbons
The edges of graphene nanoribbons (GNRs) have attracted much interest due to
their potentially strong influence on GNR electronic and magnetic properties.
Here we report the ability to engineer the microscopic edge termination of high
quality GNRs via hydrogen plasma etching. Using a combination of
high-resolution scanning tunneling microscopy and first-principles
calculations, we have determined the exact atomic structure of plasma-etched
GNR edges and established the chemical nature of terminating functional groups
for zigzag, armchair and chiral edge orientations. We find that the edges of
hydrogen-plasma-etched GNRs are generally flat, free of structural
reconstructions and are terminated by hydrogen atoms with no rehybridization of
the outermost carbon edge atoms. Both zigzag and chiral edges show the presence
of edge states.Comment: 16+9 pages, 3+4 figure
- …