23 research outputs found

    Phase transitions with four-spin interactions

    Full text link
    Using an extended Lee-Yang theorem and GKS correlation inequalities, we prove, for a class of ferromagnetic multi-spin interactions, that they will have a phase transition(and spontaneous magnetization) if, and only if, the external field h=0h=0 (and the temperature is low enough). We also show the absence of phase transitions for some nonferromagnetic interactions. The FKG inequalities are shown to hold for a larger class of multi-spin interactions

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Get PDF
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.

    The limit of inconsistency reduction in pairwise comparisons

    No full text
    This study provides a proof that the limit of a distance-based inconsistency reduction process is a matrix induced by the vector of geometric means of rows when a distance-based inconsistent pairwise comparisons matrix is transformed into a consistent PC matrix by stepwise inconsistency reduction in triads. The distance-based inconsistency indicator was defined by Koczkodaj (1993) for pairwise comparisons. Its convergence was analyzed in 1996 (regretfully, with an incomplete proof) and finally completed in 2010. However, there was no interpretation provided for the limit of convergence despite its considerable importance. This study also demonstrates that the vector of geometric means and the right principal eigenvector are linearly independent for the pairwise comparisons matrix size greater than three, although both vectors are identical (when normalized) for a consistent PC matrix of any size
    corecore