290 research outputs found
Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes
Haumann C, Pelargus C, Frey HG, et al. Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes. Review of scientific instruments. 2005;76(3): 033704.Near-field optical applications require the fast, stable, and reproducible fabrication of scanning near-field optical microscopy (SNOM) aperture probes in the submicrometer range. We have developed a stand-alone device for the electrolytic etching of nanoapertures with an integrated current and optical transmission monitoring and control. Probes with an aperture ranging from 50 to 100 nm were reproducibly fabricated with great reliability. With these probes, high resolution SNOM images of 100 nm test patterns and single dye molecules (Rhodamine 6G in poly(vinyl alcohol)) are measured and presented. Not requiring a SNOM setup, the stand-alone device is not only inexpensive and compact, but also insensitive to external disturbances
Evaluation of an ambulatory system for the quantification of cough frequency in patients with chronic obstructive pulmonary disease
BACKGROUND: To date, methods used to assess cough have been primarily subjective, and only broadly reflect the impact of chronic cough and/or chronic cough therapies on quality of life. Objective assessment of cough has been attempted, but early techniques were neither ambulatory nor feasible for long-term data collection. We evaluated a novel ambulatory cardio-respiratory monitoring system with an integrated unidirectional, contact microphone, and report here the results from a study of patients with COPD who were videotaped in a quasi-controlled environment for 24 continuous hours while wearing the ambulatory system. METHODS: Eight patients with a documented history of COPD with ten or more years of smoking (6 women; age 57.4 ± 11.8 yrs.; percent predicted FEV(1 )49.6 ± 13.7%) who complained of cough were evaluated in a clinical research unit equipped with video and sound recording capabilities. All patients wore the LifeShirt(Âź )system (LS) while undergoing simultaneous video (with sound) surveillance. Video data were visually inspected and annotated to indicate all cough events. Raw physiologic data records were visually inspected by technicians who remained blinded to the video data. Cough events from LS were analyzed quantitatively with a specialized software algorithm to identify cough. The output of the software algorithm was compared to video records on a per event basis in order to determine the validity of the LS system to detect cough in COPD patients. RESULTS: Video surveillance identified a total of 3,645 coughs, while LS identified 3,363 coughs during the same period. The median cough rate per patient was 21.3 coughs·hr(-1 )(Range: 10.1 cghs·hr(-1 )â 59.9 cghs·hr(-1)). The overall accuracy of the LS system was 99.0%. Overall sensitivity and specificity of LS, when compared to video surveillance, were 0.781 and 0.996, respectively, while positive- and negative-predictive values were 0.846 and 0.994. There was very good agreement between the LS system and video (kappa = 0.807). CONCLUSION: The LS system demonstrated a high level of accuracy and agreement when compared to video surveillance for the measurement of cough in patients with COPD
Intermetallic Cobalt Indium Nanoparticles as Oxygen Evolution Reaction Precatalyst: A Non-Leaching p-Block Element
Merely all transition-metal-based materials reconstruct into similar oxyhydroxides during the electrocatalytic oxygen evolution reaction (OER), severely limiting the options for a tailored OER catalyst design. In such reconstructions, initial constituent p-block elements take a sacrificial role and leach into the electrolyte as oxyanions, thereby losing the ability to tune the catalyst's properties systematically. From a thermodynamic point of view, indium is expected to behave differently and should remain in the solid phase under alkaline OER conditions. However, the structural behavior of transition metal indium phases during the OER remains unexplored. Herein, are synthesized intermetallic cobalt indium (CoIn3) nanoparticles and revealed by in situ X-ray absorption spectroscopy and scanning transmission microscopy that they undergo phase segregation to cobalt oxyhydroxide and indium hydroxide. The obtained cobalt oxyhydroxide outperforms a metallic-cobalt-derived one due to more accessible active sites. The observed phase segregation shows that indium behaves distinctively differently from most p-block elements and remains at the electrode surface, where it can form lasting interfaces with the active metal oxo phases
Development of IronâBased Single Atom Materials for General and Efficient Synthesis of Amines
Earth abundant metalâbased heterogeneous catalysts with highly active and at the same time stable isolated metal sites constitute a key factor for the advancement of sustainable and costâeffective chemical synthesis. In particular, the development of more practical, and durable ironâbased materials is of central interest for organic synthesis, especially for the preparation of chemical products related to life science applications. Here, we report the preparation of Feâsingle atom catalysts (FeâSACs) entrapped in Nâdoped mesoporous carbon support with unprecedented potential in the preparation of different kinds of amines, which represent privileged class of organic compounds and find increasing application in daily life. The optimal FeâSACs allow for the reductive amination of a broad range of aldehydes and ketones with ammonia and amines to produce diverse primary, secondary, and tertiary amines including Nâmethylated products as well as drugs, agrochemicals, and other biomolecules (amino acid esters and amides) utilizing green hydrogen
Chrysomelidial in the Opisthonotal Glands of the Oribatid Mite, Oribotritia berlesei
Gas chromatographicâmass spectrometric analyses of whole body extracts of Oribotritia berlesei, a large-sized soil-dwelling oribatid mite, revealed a consistent chemical pattern of ten components, probably originating from the well-developed opisthonotal glands. The three major components of the extract were the iridoid monoterpene, (3S,8S)-chrysomelidial (about 45% of the extract), the unsaturated hydrocarbon 6,9-heptadecadiene, and the diterpene ÎČ-springene (the latter two, each about 20â25% of the extract). The remaining minor components (together about 10% of the extract) included a series of hydrocarbons (tridecene, tridecane, pentadecene, pentadecane, 8-heptadecene, and heptadecane) and the tentatively identified 9,17-octadecadienal. In contrast, analysis of juveniles showed only two compounds, namely a 2:1 mixture of (3S,8S)-chrysomelidial and its epimer, epi-chrysomelidial (3S,8R-chrysomelidial). Unexpectedly, neither adult nor juvenile secretions contained the so-called astigmatid compounds, which are considered characteristic of secretions of oribatids above moderately derived Mixonomata. The chrysomelidials, as well as ÎČ-springene and octadecadienal, are newly identified compounds in the opisthonotal glands of oribatid mites and have chemotaxonomic potential for this group. This is the first instance of finding chrysomelidials outside the Coleoptera
Is Mn-Bound Substrate Water Protonated in the S2 State of Photosystem II?
In spite of great progress in resolving the geometric structure of the water-splitting Mn4OxCa cluster in photosystem II, the binding sites and modes of the two substrate water molecules are still insufficiently characterized. While time-resolved membrane-inlet mass spectrometry measurements indicate that both substrate water molecules are bound to the oxygen-evolving complex (OEC) in the S2 and S3 states (Hendry and Wydrzynski in Biochemistry 41:13328â13334, 2002), it is not known (1) if they are both Mn-bound, (2) if they are terminal or bridging ligands, and (3) in what protonation state they are bound in the different oxidation states Si (i = 0, 1, 2, 3, 4) of the OEC. By employing 17O hyperfine sublevel correlation (HYSCORE) spectroscopy we recently demonstrated that in the S2 state there is only one (type of) Mn-bound oxygen that is water exchangeable. We therefore tentatively identified this oxygen as one substrate âwaterâ molecule, and on the basis of the finding that it has a hyperfine interaction of about 10 MHz with the electron spin of the Mn4OxCa cluster, we suggest that it is bound as a MnâOâMn bridge within a bis-ÎŒ2 oxo-bridged unit (Su et al. in J Am Chem Soc 130:786â787, 2008). Employing pulse electron paramagnetic resonance, 1H/2H Mims electron-nuclear double resonance and 2H-HYSCORE spectroscopies together with 1H/2H-exchange here, we test this hypothesis by probing the protonation state of this exchangeable oxygen. We conclude that this oxygen is fully deprotonated. This result is discussed in the light of earlier reports in the literature
Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems
While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authorsâ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes
Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase
ââObserving Antarctic Bottom Water in the Southern Oceanâ
Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABWâs key role in regulating Earthâs climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system
- âŠ