1,067 research outputs found

    Electronic Structure of Superconducting Ba6c60

    Full text link
    We report the results of first-principles electronic-structure calculations for superconducting Ba6C60. Unlike the A3C60 superconductors, this new compound shows strong Ba-C hybridization in the valence and conduction regions, mixed covalent/ionic bonding character, partial charge transfer, and insulating zero-gap band structure.Comment: 11 pages + 4 figures (1 appended, others on request), LaTeX with REVTE

    Electric-Field-Induced Mott Insulating States in Organic Field-Effect Transistors

    Get PDF
    We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modelled by a Hubbard Hamiltonian similar to that used for the kappa-(BEDT-TTF)(2)X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion, U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.Comment: 9 pages, 7 figure

    Magnetic Properties of Undoped C60C_{60}

    Full text link
    The Heisenberg antiferromagnet, which arises from the large UU Hubbard model, is investigated on the C60C_{60} molecule and other fullerenes. The connectivity of C60C_{60} leads to an exotic classical ground state with nontrivial topology. We argue that there is no phase transition in the Hubbard model as a function of U/tU/t, and thus the large UU solution is relevant for the physical case of intermediate coupling. The system undergoes a first order metamagnetic phase transition. We also consider the S=1/2 case using perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included

    Computer memories: the history of computer form

    Get PDF
    This paper looks at the computer as a truly global form. The similar beige boxes found in offices across the world are analysed from the perspective of design history rather than that of the history of science and technology. Through the exploration of an archive of computer manufacturer's catalogues and concurrent design texts, this paper examines the changes that have occurred in the production and consumption of the computer in the context of the workplace, from its inception as a room-sized mainframe operated through a console of flashing lights, to the personal computer as a 'universal' form, reproduced by many manufacturers. It shows how the computer in the past has been as diverse as any other product, and asks how and why it now appears as a standardised, sanitised object. In doing so our relationship with the office computer, past and present is explored, revealing a complex history of vicissitude.</p

    In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes

    Full text link
    We have measured the four IR active C60C_{60} molecular vibrations in MxC60M_{x}C_{60} (M=K,Rb)(M = K, Rb) as a function of doping xx. We observe discontinuous changes in the vibrational spectra showing four distinct phases (presumably x=0,3,4x = 0, 3, 4, and 6). The 1427cm11427cm^{-1} and 576cm1576cm^{-1} modes show the largest changes shifting downward in frequency in four steps as the doping increases. Several new very weak modes are visible in the x=6x=6 phase and are possibly Raman modes becoming weakly optically active. We present quantitative fits of the data and calculate the electron-phonon coupling of the 1427cm11427cm^{-1} IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request. REVTEX v3.0 IRC60DO
    corecore